• Title/Summary/Keyword: 환경 하중

Search Result 1,316, Processing Time 0.028 seconds

Development of Analysis Method and Computer Program for Train-induced Ground Vibration (철도연변 지반진동 예측기법 및 전산프로그램 개발)

  • 황선근;엄기영;고태훈;이종재
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.203-210
    • /
    • 2000
  • Recently, environmental vibration by train operation has been getting such an attention that the ISO puts it into the environmental vibration regulation. However, the reasonable and efficient countermeasures against such a kind of vibration is not well established, especially in residential areas near the railroad. Therefore, it is very important to estimate the ground vibration induced by the train operation for the design and construction of track supporting structures as well as structures near the track. In this study a model estimating dynamic load on track due to train operation and analysis technique of propagation of ground vibration were developed. Futhermore, the estimated vibration from this model was compared with the actual measurement data in the field and found to be reasonably acceptable.

  • PDF

Study on Fire Resistance of Beams filled with Concrete at Web Through Temperature Analysis and Load-bearing Fire Tests (온도해석과 재하가열시험에 의한 콘크리트 충전 보부재의 내화성능평가에 관한 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.82-88
    • /
    • 2010
  • Major structural elements such as columns and beams are designed to withstand the vertical and horizontal loads. Futhermore, when the structural elements were engulfed with fire the structural stability should be stand without failure. The beams have been developed in aspects of structural stability but an evaluation of fire performance was not done. So the data of fire resistance performance of beams filled with concrete at web on H-section is not known. The purpose of this paper is to analyse the correlation between temperature analysis and fire test with the beams and to show the fire resistance performance with two methods.

Vertical Vibration Isolator for Reducing Structural Vibration (구조물의 진동저감을 위한 수직형 면진장치)

  • Choi, Sanghyun;Baek, Joon-Ho;Lee, You In
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • In these days, the design of a structure for reducing or eliminating noise and vibration is getting more important, as the social demands for reducing environmental pollution rise. In this paper, the basic concept and performance verification test results of the recently developed vertical vibration isolator are presented. The isolator attenuates vibration using the damping action from the friction plane made of PTFE and provides the restoring force from the polyurethane springs arranged in vertical and horizontal directions. The performance verification tests consist of a test for identifying performance change during load rate variation and a test for confirming the force-displacement relationship assumption in vibration force range.

Design Thermal Loads In Composite Box Girder Bridges (합성형교량의 설계온도하중)

  • Chang, Sung Pil;Im, Chang Kyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.537-551
    • /
    • 1998
  • The intention of this paper is to provide realistic values of design thermal loads applicable to composite box girder bridges on the basis of the statistical analysis of long-term measured temperature data. For this purpose, temperatures were recorded at a newly constructed composite box girder bridge during about 20 months. Before analyzing the extreme values, major thermal loading parameters that characterize the temperature profile are defined, and a seasonal behavior of those is examined in detail. The limit distributions of the thermal loading parameters are then determined by the tail-equivalence method, and the thermal loading parameters corresponding to selected return period are calculated. Finally, the results are compared to the specifications suggested in a current design code for thermal loads, and it is concluded that the current design code is unsuitable for representing the self-equilibrated thermal stresses in composite bridges, and the horizontal temperature difference which is not suggested in current design code should be taken Into account in particular cases.

  • PDF

An analysis on the ground impact load and dynamic behavior of the landing gear system using ADAMS (ADAMS를 이용한 항공기 착륙장치 지상 충격하중 및 동적거동 해석)

  • Choi, Sup;Lee, Jong-Hoon;Cho, Ki-Dae;Jung, Chang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.114-122
    • /
    • 2002
  • The integration of the landing gear system is a complex relationship between the many conflicting parameters of shock absorption, minimum stow area, complexity, weight and cost. Especially ground impact load and dynamic behaviors greatly influence design load of landing gear components as well as load carrying structural attachment. This study investigates ground impact load and dynamic behaviors of the T-50 landing gear system using ADAMS. Taking into account for various operational/environmental conditions, an analysis of shock absorbing characteristics at ground impact is performed with experience derived from a wide range of proprietary designs. Analytical results are presented for discussing the effects of aircraft horizontal and vertical speed, landing attitudes, shock absorbing efficiency. This analysis leads us to the conclusion that the proposed program is shown to be a better quantitative one that apply to a new development and troubleshooting of the landing gear system.

A Study on Prediction of Acoustic Loads of Launch Vehicle Using NURBS Curve Modeling (넙스(NURBS) 곡선 모델링을 이용한 발사체 음향하중 예측에 대한 연구)

  • Park, Seoryong;Kim, Hongil;Lee, Soogab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.106-113
    • /
    • 2018
  • The Intense acoustic wave generated by the jet flame at the lift-off causes the vehicle to vibrate in the form of acoustic loads. The DSM-II(Distributing Source Method-II), which is a representative empirical acoustic loads prediction method, is a method of distributing a noise source along a jet flame axis and has advantages in calculation cost and accuracy. However, due to the limitation of the distributing method, there is a limit to accurately reflect the various launch pad configurations. In this study, acoustic loads prediction method which can freely distribute noise sources is studied. by introducing NURBS(Non-Uniform Rational B-Spline) modeling into empirical prediction method. For the verification of the newly introduced analytical technique of the NURBS, the acoustic loads prediction for the Epsilon rocket's low-noise launch pad shape was performed and the results of the analysis were compared with the existing prediction methods and experimental results.

The Study on Structural Strength Test Technique for Cylindrical Supersonic Vehicle Subjected to Severe Heating Environment (원통형 초음속 비행체 내열구조시험 기법 연구)

  • Lee, Kyung-Yong;Kim, Jong-Hwan;Lee, Kee-Bhum;Jung, Jae-Kwon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.83-91
    • /
    • 2005
  • This paper describes the structural strength test technique and the results for cylindrical supersonic vehicle subjected to both aerodynamic load and thermal load. The special positioning system using spring links was designed to float, support and restrain the test airframe during the test and the down-time. The hydraulic system and the electric heating system were utilized to apply the aerodynamic load and the thermal load to the test airframe together. Particularly, several hundreds of infrared quartz lamps were used for the heating system, and the thermal test conditions were successfully simulated. The test results showed that this kind of high temperature test is adequate to verify the structure integrity and produce useful engineering data which is necessary for the possible structural modification under thermal environments.

Conceptual Design of Structure Subsystem for Geo-stationary Multi-purpose Satellite (정지궤도복합위성 구조계 개념설계)

  • Kim, Chang-Ho;Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Kim, Sung-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.110-115
    • /
    • 2012
  • Satellite structure should be designed to accommodate and support safely the payload and equipments necessary for its own missions and to secure satellite and payloads from severe launch environments. The launch environments imposed on satellites are quasi-static accelerations, aerodynamic loads, acoustic loads and shock loads. Currently KARI(Korea Aerospace Research Institute) is developing Geo-KOMPSAT-2(Geostationary Earth Orbit KOrea Multi-Purpose Satellite) with technologies which were acquired during COMS(Communication, Ocean and Meteorological Satellite) development. As compared to COMS Geo-KOMPSAT-2 requires more propellant due to mass increase of Advanced Meteorological Payload with high resolution and increase of miss life, it is difficult to apply the design concept of COMS to Geo-KOMPSAT-2. This paper deals with conceptual design of Structural Subsystem for Geo-KOMPSAT-2.

A Study on the Effects of Wind Load of Membrane Roof Structures according to External Form (외형에 따른 지붕 막구조물의 풍하중 영향 고찰)

  • Ko, Kwang-Woong;Jang, Myung-Ho;Lee, Jang-Bog;Sur, Sam-Yeol
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.15-18
    • /
    • 2008
  • A Spatial structure, having a curvature with a curved surface, is an extremely efficient mechanical creation considering the external load. It is resisted the out-of-plane direction load by in-plane forces using the structure's curvature. Spatial Structures include many types of structures, such as: space frames or grids; cable-and-strut and tensegrity; air-supported or air-inflated; self-erecting and deployable; cable net; tension membrane; lightweight geodesic domes; folded plates; and thin shells. Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. It is very important that effects by wind load than seismic and dead load. And, wind load is different by surrounding and shape of building In this study, we analyze the results of design wind load and wind tunnel tests about the 2 stadiums which are constructed on sensitive sites by effect of wind loads.

  • PDF

Behavior Analysis of Ultra-Thin Whitetopping in Field (얇은 콘크리트 덧씌우기 포장의 거동 평가)

  • Kang, Jang-Hwan;Jang, Jin-Yen;Koo, Han-Mo;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.6 no.1 s.19
    • /
    • pp.25-36
    • /
    • 2004
  • The total length of paved roads in Korea is 67,265 Km, and among these roads, about 40% of the national highways and 98% of local roads are paved with asphalt concrete. The major distress to asphalt pavement is rutting and fatigue crack. The permanent deformation including rutting accounts for about 75% of this distress. UTW(Ultra-Thin Whitetopping), which is known for its high-quality performance in asphalt pavement with rutting and cracking, seems to reduce maintenance costs significantly if it is used as the maintenance/repair method for domestic asphalt pavement. In the research, static load test was conducted to establish a behavior of Whitetopping under traffic and environmental condition. It showed that the effect of the thickness of the concrete layer and the temperature change was significant. In addition, the tensile strain as the wheel load position was close to interior and edge of concrete slab were increased up to 75% of maximum tensile strain. It showed that joint spacing must be considered in UTW design procedure.

  • PDF