• Title/Summary/Keyword: 환경 외력

Search Result 130, Processing Time 0.031 seconds

Structural Performance Evaluation of a Multi-span Greenhouse with Venlo-type Roof According to Bracing Installation (가새 설치에 따른 벤로형 지붕 연동온실의 구조성능 평가)

  • Shin, Hyun Ho;Choi, Man Kwon;Cho, Myeong Whan;Kim, Jin Hyun;Seo, Tae Cheol;Lee, Choung Kuen;Kim, Seung Yu
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.438-443
    • /
    • 2022
  • In this study, the lateral loading test was performed to analyze structural performance of multi-span plastic greenhouse through full-scale experiment and numerical analysis. In order to analyze the lateral stiffness and stress, we installed 9 displacement sensors and 19 strain gauge sensors on the specimen, respectively, and load of l mm per minute was applied until the specimen failure. In the comparison between the full-scale experiment and the structural analysis results of a multi-span greenhouse with venlo-type roof according to bracing installation, there was a large difference in the lateral stiffness of the structure. By installing a brace system, the lateral stiffness measured near the side elevation of the specimen increased by up 44%. As the bracing joint used in the field did not secure sufficient rigidity, the external force could not be transmitted to the entire structure properly. Therefore, it is necessary to establish a bracing construction method and design standards in order for a greenhouse to which bracing applied to have sufficient performance.

An analysis of land displacements in terms of hydrologic aspect: satellite-based precipitation and groundwater levels (수문학적 관점에서의 지반 변위 분석: 인공위성 강우데이터와 지하수위 연계)

  • Oh, Seungcheol;Kim, Wanyub;Kang, Minsun;Yoon, Hongsic;Yang, Jungsuk;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1031-1039
    • /
    • 2022
  • As one of the hydrological factors closely related to landslides, precipitation indirectly affects slope stability by generating external forces. Groundwater level fluctuations have attracted more attention lately as factors that directly affect slope stability have become more prominent. Therefore, this study attempted to analyze the relationship between variables through changes in precipitation, groundwater levels, and land displacement. A time series-based analysis was conducted using satellite-based precipitation and point-based groundwater levels in conjunction with the PSInSAR technique to simulate land displacement in urban and mountainous areas. There was a sharp rise in groundwater levels in both urban and mountain areas during heavy rainfall, and a continuous decrease in urban areas when rainfall was low. 6 mm of displacements was observed in the mountainous area as a results of soil outflow from the topsoil layer, which was accompanied by an increased groundwater level. Meanwhile, different results were found in urban area. In response to the rise in groundwater level, the land displacement increases due to the expansion of soil skeletons, while the decrease seems to be attributed to anthropogenic influences. Overall, there was no consistent relationship between groundwater levels and land displacement, which appears to be caused by factors other than hydrological factors. Additional consideration of environmental factors could contribute to a deeper understanding of the relationship between the two factors.

Structural Analysis of the Governing Variables Affecting the Structural Strength Evaluation of the Lashing Bridges in Container Vessels (컨테이너선 라싱 브릿지 구조 강도 평가에 영향을 미치는 주요 변수의 구조해석)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.230-237
    • /
    • 2023
  • Due to the COVID-19 pandemic and climate change, shortages of essential commodities and resources continue to occur globally. To address this problem, trade volume demand suddenly increased, driving up the freight rate of container ships sharply. The size of container vessels progressively increased from 1,500 TEU (twenty-foot equivalent unit) in the 1960s to 24,400 TEU in 2021. As the improvement of container loading capacity is closely related to the enlargement of the lashing bridge structure, it is necessary to design a structure effective for good container securing and safe under the various external loads that occur during voyage. Major classification societies have recently issued structural-analysis-based guidelines to evaluate the structural safety of lashing bridges, but their acceptance criteria and evaluation methods are different, causing confusion among engineers during design. In this study, the strength change characteristics are summarized by variations in the main variables (modeling range, opening consideration, mesh size) likely to affect the results. Based on this result, the authors propose a reasonable structural-analysis-based evaluation that is expected to serve as a reference in the next revision of classification standards.

A Study on the Required Horsepower of Tugboats at Jeju Port for Car Ferries - Focusing on Car Ferry H - (카페리여객선 제주항 입출항 시 예선 사용 기준에 관한 연구 - 카페리여객선 H호를 중심으로 -)

  • Byung-Sun Kang;Chang-Hyun Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.209-216
    • /
    • 2024
  • Four accidents occurred between 2020 and 2022 after car ferries built according to a coastal passenger ship modernization plan collided with other ships or came into contact with the dock when entering Jeju Port. Accidents primarily occurred owing to careless ship handling and drift by wind during ship handled by herself using bow and stern thrusters without tugboats. Accordingly, in this study, we analyzed the collision accident focusing on car ferry H and the critical wind speed at which the ship cannot be controlled using its own power, tugboat operation plan in increasing wind speed were proposed based on the power required for the ship to berth parallel to the pier without a tugboat considering the external force and moment generated while the ship is berthing. A analysis of the critical wind speed of car ferry H by relative wind direction when using tugboats or not according to the loading status and the berthing speed, showed that one tugboat should be used at the stern when the lateral wind speed is over 10 m/s and two tugboats should be used when the lateral wind speed is over 14m/s berthing at Jeju port.

Accuracy of HF radar-derived surface current data in the coastal waters off the Keum River estuary (금강하구 연안역에서 HF radar로 측정한 유속의 정확도)

  • Lee, S.H.;Moon, H.B.;Baek, H.Y.;Kim, C.S.;Son, Y.T.;Kwon, H.K.;Choi, B.J.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.42-55
    • /
    • 2008
  • To evaluate the accuracy of currents measured by HF radar in the coastal sea off Keum River estuary, we compared the facing radial vectors of two HF radars, and HF radar-derived currents with in-situ measurement currents. Principal component analysis was used to extract regression line and RMS deviation in the comparison. When two facing radar's radial vectors at the mid-point of baseline are compared, RMS deviation is 4.4 cm/s in winter and 5.4 cm/s in summer. When GDOP(Geometric Dilution of Precision) effect is corrected from the RMS deviations that is analyzed from the comparison between HF radar-derived and current-metermeasured currents, the error of velocity combined by HF radar-derived current is less than 5.1 cm/s in the stations having moderate GDOP values. These two results obtained from different method suggest that the lower limit of HF radar-derived current's accuracy is 5.4 cm/s in our study area. As mentioned in previous researches, RMS deviations become large in the stations located near the islands and increase as a function of mean distance from the radar site due to decrease of signal-to-noise level and the intersect angle of radial vectors. We found that an uncertain error bound of HF radar-derived current can be produced from the separation process of RMS deviations using GDOP value if GDOP value for each component is very close and RMS deviations obtained from current component comparison are also close. When the current measured in the stations having moderate GDOP values is separated into tidal and subtidal current, characteristics of tidal current ellipses analyzed from HF radar-derived current show a good agreement with those from current-meter-measured current, and time variation of subtidal current showed a response reflecting physical process driven by wind and density field.

Study on Structural Integrity and Dynamic Characteristics of Knuckle Parts of KTX Anti-Roll Bar (KTX 고속열차 안티롤바 너클부의 동특성 및 구조 안전성 평가)

  • Jeon, Kwang Woo;Shin, Kwang Bok;Kim, Jin Woo;Jeong, Yeon Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1035-1041
    • /
    • 2013
  • To evaluate the structural integrity and dynamic characteristic of the knuckle part of a KTX anti-roll bar, an experimental and a numerical approach were used in this study. In the experimental approach, the acceleration and strain data for the knuckle parts of the KTX and KTX-SANCHUN anti-roll bar were respectively measured to evaluate and compare its structural dynamic characteristics under the operating environments of the Honam line. In the numerical approach, the evaluation of its structural integrity was conducted using LS-DYNA 3D, and then, the reliability of the finite element model used was ensured by a comparative evaluation with the experiment. The numerical results showed that the stress and velocity field of the knuckle part composed of a layered structure of a thin steel plate and rubber were more moderate than those of the knuckle part made of only a thick steel block owing to the reduction of relative contact between the knuckle and the connecting rod. It was found that the knuckle part made of a thin steel plate and rubber was recommended as the best solution to improve its structural integrity resulting from the elastic behavior of the KTX anti-roll bar being enabled under a repeating external force.

The Practical Simplified Equation for Settlement Evaluation of Counter Facility in Soft Ground Centering on Rubble Mound (연약지반에 설치된 항만 외곽시설의 안전점검을 위한 침하 평가 간편식 제안 - 사석경사제 중심으로)

  • Kim, Yong-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.317-324
    • /
    • 2020
  • In this study, a simplified equation for settlement evaluation suitable for the special conditions of a counter facility is suggested. Recently, counter facilities, especially breakwaters, are constructed on soft ground in distant seas as new-port development projects. A counter facility that resists the external forces by self-weight settles easily when constructed on soft ground. Settlement in a counter facility and breakwater is not an important factor for maintenance than a land facility. On the other hand, the current settlement evaluation criteria are excessive for conducting a safety inspection. A settlement evaluation from a safety inspection followed by "Detailed Guidelines for a safety inspection on a counter facility" is used. A simplified equation was proposed to calculate the maximum settlement by applying the allowable residual settlement or settlement stability evaluation results. The suitability of the simplified equation was assessed compared to the assessed rating from the settlement survey results. The proposed simplified equation showed that the settlement evaluation rating had been upgraded. The proposed simplified equation is expected to be used to evaluate the practical structural stability and functional performance.

Development of Precast Concrete Method for Eco-Pillar Debris Barrier with Hollow Cross-Section (중공트랙형 단면의 프리캐스트 에코필라 사방댐 공법개발)

  • Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.542-552
    • /
    • 2018
  • In this paper, the precast method of a concrete eco-pillar debris barrier was proposed to improve the construct ability and economic efficiency. The performance was validated by experimental and structural analysis. The steel debris barrier has a high construction cost and causes environmental damage with corrosion. The construction of a concrete eco-pillar debris barrier has been increased recently. On the other hand, there are no design standards regarding debris barriers in Korea, and debris barriers are being designed by the experience and sense of engineers. Therefore, in this study, a method to determine the design external forces was proposed and the design was performed by applying a hollow cross-section to the debris barrier. In addition, three types of connection methods of a concrete cantilever column with the maximum bending moment acts were proposed, and validation of the performance of each type was performed with a real-scale experiment. The experimental results showed that the type with loop reinforcement had the highest rigidity and the type with anchorage performance exceeded the maximum bending moment according to the ultimate load. In the manufacturing procedure of mock-up debris barriers, the type with an anchorage-bar was found to have superior construct ability.

A Study on Anisotropy of Magnetic Susceptibility of Clastic Sedimentary Rocks in the Gyeongsang Basin (경상분지 쇄설성 퇴적암의 대자율 이방성 연구)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Hwang, Woong-Ki;Kwon, Hyun-Wook;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.8
    • /
    • pp.5-14
    • /
    • 2018
  • The grain size of clastic sedimentary rocks classifies the rock types and also causes of anisotropy of the rock. The anisotropy is one of the most important factors that dominates the strength and weathering behavior of rocks. The anisotropy of clastic sedimentary and igneous rocks in the Gyeongsang Basin including Yeongju, Daegu, and Busan were analyzed by magnetic susceptibility expressed by the degree of anisotropy and shape parameter. As the results of the study, the sandstone deposited under lacustrine environment unaffected by the external force shows 1.03 degree of anisotropy. The degrees of anisotropy of the rocks affected by faults and fault rocks show 1.06 and 1.14, respectively. The magnetic susceptibility of rocks is to decrease with the distance from the fault. A fresh mudstone and shale formed by fines show a similar magnitude of the degree of anisotropy to fault rock and correspond to oblate shape parameter due to their sedimentary structure. Due to these reasons, we need attention in design, construction, and maintenance of a structure constructed in mudstone and shale.

An Experimental Study on the Flexural Behavior of Slab Repaired and Reinforced with Strand and Polymer Mortar (강연선과 폴리머 모르타르에 의해 보수보강된 슬래브의 휨거동에 대한 실험적 고찰)

  • Yang Dong-Suk;Hwang Jeong-Ho;Park Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.171-177
    • /
    • 2005
  • Even though the cost associated with the repair and rehabilitation of existing structures are rapidly increasing, vast number of the repaired and rehabilitated structures do not function properly as expected during their remaining service lives. This paper focused on the flexural behavior of reinforced concrete slabs repaired and reinforced by PS strand and polymer mortar in the tension face. The slabs have the size of 700${\times}120{\times}$2200 m and 700${\times}120{\times}$1300 mm. Variables of experiment were space of strengthening, chipping, the number of strand, the kind of mortar in this experimental study. Attention is concentrated upon overall bending capacity, deflection, ductility and failure mode of repaired and reinforced slabs. Test results show that deflection of repaired and reinforced slabs reduced to approximately $40 \%$ comparison to standard slabs. Boundary cracking of chipping slab started ultimate load afterward. Concrete-mortar interface cracked 64.5 kN in repaired slab with AP mortar and 36.0 kN in repaired slab with general polymer mortar. Reinforcement effect increased with reducing space of strand. Also, Reinforcement effects are more by strand than by polymer mortar.