• Title/Summary/Keyword: 환경 군집화

Search Result 365, Processing Time 0.027 seconds

A Study on Clustering Representative Color of Natural Environment of Korean Peninsula for Optimal Camouflage Pattern Design (최적 위장무늬 디자인을 위한 한반도 자연환경 대표 색상 군집화 연구)

  • Chun, Sungkuk;Kim, Hoemin;Yoon, Seon Kyu;Yun, Jeongrok;Kim, Un Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.315-316
    • /
    • 2019
  • 전투복, 군용 천막 등에 사용되는 위장무늬는 군 작전 수행 시 주변 환경의 색상, 패턴을 모사하여 개인병사 및 무기체계의 위장 기능을 극대화하고, 이를 통해 아군의 생명과 시설피해를 최소화하기 위한 목적으로 사용된다. 특히 최근 들어 군의 작전환경과 임무가 복잡하고 다양해짐에 따라, 작전환경에 대한 데이터의 취득 및 정량적 분석을 통해 전장 환경에 최적화된 위장무늬 패턴 및 색상 추출에 대한 연구의 필요성이 증대되고 있다. 본 논문에서는 한반도 자연환경 영상에 대한 자기 조직화 지도(SOM, Self-organizing Map) 기반의 한반도 자연환경 대표 색상 군집화 연구 방법에 대해 서술한다. 이를 위해 한반도 내 위도를 고려한 장소에서 시간별, 계절별 자연환경 영상 수집을 진행하며, 수집된 영상 내 다수의 화소의 군집화를 위해 2차원 SOM을 활용한다. 영상 내 각 화소의 색상 값에 대한 SOM의 학습 시, RGB공간상의 색차/색상 인지 왜곡을 피하기 위하여 CIEDE2000 색차 식을 통해 군집화를 진행한다. 실험결과에서는 온라인상으로 수집한 여름 및 가을철 대표 색상 군집화 결과와, 현재까지 수집된 계절별 자연환경 사진 내 6억 7648개 화소에 대한 대표 색상 군집화 결과를 보여준다.

  • PDF

Simultaneous Speaker and Environment Adaptation by Environment Clustering in Various Noise Environments (다양한 잡음 환경하에서 환경 군집화를 통한 화자 및 환경 동시 적응)

  • Kim, Young-Kuk;Song, Hwa-Jeon;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.566-571
    • /
    • 2009
  • This paper proposes noise-robust fast speaker adaptation method based on the eigenvoice framework in various noisy environments. The proposed method is focused on de-noising and environment clustering. Since the de-noised adaptation DB still has residual noise in itself, environment clustering divides the noisy adaptation data into similar environments by a clustering method using the cepstral mean of non-speech segments as a feature vector. Then each adaptation data in the same cluster is used to build an environment-clustered speaker adapted (SA) model. After selecting multiple environmentally clustered SA models which are similar to test environment, the speaker adaptation based on an appropriate linear combination of clustered SA models is conducted. According to our experiments, we observe that the proposed method provides error rate reduction of $40{\sim}59%$ over baseline with speaker independent model.

Automatic Clustering Agent using PCA and SOM (PCA와 SOM을 이용한 자동 군집화 에이전트)

  • 박정은;김병진;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.67-70
    • /
    • 2003
  • 인터넷의 정보 홍수 속에서 원하는 정보를 정확하게 제시간에 얻기란 쉬운 일이 아니며, 따라서 이러한 작업을 대신해주는 에이전트의 역할이 점점 커지고 있다. 대부분의 이벤트들이 실시간에 발생되고 처리되어야 하는 인터넷 환경에서는 분석가가 군집화의 방법과 결과 해석에 지속적으로 관여하기 어렵기 때문에 이러한 분석가의 업무를 대신하는 지능화된 에이전트가 필요하게 된다. 본 논문에서는 특히 자율학습 군집화에 대한 자동화된 시스템으로서 자동 군집화 에이전트를 제안하며 이 시스템은 군집화 수행 에이전트와 군집화 성능 평가 에이전트로 이루어져 있다. 두 개의 에이전트가 서로 정보를 교환하면서 자동적으로 최적의 군집화를 수행한다. 군집화 과정에서는 데이터를 분석하는 분석가가 군집화의 방법과 결과 해석에 실시간으로 관여하기 어렵기 때문에 이러한 작업을 담당하는 지능화된 에이전트가 자동화된 군집화를 담당하면 효과적인 군집화 전략이 될 수 있다. 또한 UCI Machine Repository의 IRIS 데이터와 Microsoft Web Log Data를 이용한 실험을 통해 제안 시스템의 성능 평가를 수행하였다.

  • PDF

Intelligent Data Mining Agent for Automatic Clustering (자동 군집화를 위한 지능화된 데이터 마이닝 에이전트)

  • 박정은;전성해;오경환
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.370-376
    • /
    • 2002
  • 인터넷 환경에서 발생되는 수많은 데이터를 지능적으로 처리할 수 있는 자동화된 분석 시스템의 필요성이 제기된다. 이러한 시스템의 데이터 분석은 크게 지도 학습과 자율 학습으로 나된다. 본 논문에서는 특히 자율학습 군집화에 대한 자동화된 시스템으로서 지능화된 데이터 마이닝 에이전트를 제안한다. 군집화 과정에서는 데이터를 분석하는 분석가가 군집화의 방법과 결과 해석에 실시간으로 관여하기 어렵기 때문에 이러한 작업을 담당하는 지능화된 에이전트가 자동화된 군집화를 담당하면 효과적인 군집화 전략이 될 수 있다. 본 논문의 자동 군집화를 위한 지능화된 데이터 마이닝 에이전트 시스템은 군집화 수행 에이전트와 군집화 성능 평가 에이전트로 구성된 다중 에이전트로서 두 개의 에이전트가 서로 정보를 교환하면서 최적의 군집화를 수행한다. UCI Machine Repository 데이터를 이용한 실험을 통해 제안 시스템의 성능 평가를 수행하였다.

  • PDF

Practical Privacy-Preserving DBSCAN Clustering Over Horizontally Partitioned Data (다자간 환경에서 프라이버시를 보호하는 효율적인 DBSCAN 군집화 기법)

  • Kim, Gi-Sung;Jeong, Ik-Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.3
    • /
    • pp.105-111
    • /
    • 2010
  • We propose a practical privacy-preserving clustering protocol over horizontally partitioned data. We extend the DBSCAN clustering algorithm into a distributed protocol in which data providers mix real data with fake data to provide privacy. Our privacy-preserving clustering protocol is very efficient whereas the previous privacy-preserving protocols in the distributed environments are not practical to be used in real applications. The efficiency of our privacy-preserving clustering protocol over horizontally partitioned data is comparable with those of privacy-preserving clustering protocols in the non-distributed environments.

분자생물학적 기법을 사용한 질산화유도 반응기내 군집동태변화

  • Jo, Sun-Ja;Jeong, Yong-Ju;Kim, Jeong-Cheol;Lee, Sang-Jun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2005.05a
    • /
    • pp.247-248
    • /
    • 2005
  • 본 연구는 서로 다른 조건에서 질산화를 유도한 반응기의 군집동태를 살피기 위해 RAPD, ARDRA, DGGE와 같은 기법들을 적용시켜 반응기 초기의 슬러지 구성 군집의 상태 와 질산화 유도후의 군집 변화를 살펴보고자 하였다. 결과적으로 1.5 kb정도의 165 rDNA를 이용한 RAPD와 ARDRA에서는 RAPD에 의한 군집 Patterns변화가 훨씬 다양했으며, 250 bP정도의 PCR산물로 분리를 시도한 DGGE에서도 비교적 예상했던 바와 같이 군집이 단순화되는 양상을 볼 수 있었다.

  • PDF

A clutter reduction algorithm based on clustering for active sonar systems (능동소나 시스템을 위한 군집화 기반의 클러터 제거 기법)

  • Kwak, ChulHyun;Cheong, Myoung Jun;Ahn, Jae-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.149-157
    • /
    • 2016
  • In this paper, we propose a new clutter reduction algorithm, which rejects heavy clutter density in shallow water environments, based on a clustering method. At first, it applies the density-based clustering to active sonar measurements by considering speed of targets, pulse repetition intervals, etc. We assume clustered measurements as target candidates and remove noise, which is a set of unclustered measurements. After clustering, we classify target and clutter measurements by the validation check method. We evaluate the performance of the proposed algorithm on synthetic data and sea-trial data. The results demonstrate that the proposed algorithm provides significantly better performances to reduce clutter than the conventional algorithm.

Determining the number of Clusters in On-Line Document Clustering Algorithm (온라인 문서 군집화에서 군집 수 결정 방법)

  • Jee, Tae-Chang;Lee, Hyun-Jin;Lee, Yill-Byung
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.513-522
    • /
    • 2007
  • Clustering is to divide given data and automatically find out the hidden meanings in the data. It analyzes data, which are difficult for people to check in detail, and then, makes several clusters consisting of data with similar characteristics. On-Line Document Clustering System, which makes a group of similar documents by use of results of the search engine, is aimed to increase the convenience of information retrieval area. Document clustering is automatically done without human interference, and the number of clusters, which affect the result of clustering, should be decided automatically too. Also, the one of the characteristics of an on-line system is guarantying fast response time. This paper proposed a method of determining the number of clusters automatically by geometrical information. The proposed method composed of two stages. In the first stage, centers of clusters are projected on the low-dimensional plane, and in the second stage, clusters are combined by use of distance of centers of clusters in the low-dimensional plane. As a result of experimenting this method with real data, it was found that clustering performance became better and the response time is suitable to on-line circumstance.

Analysis of spatial mixing characteristics of water quality at the confluence using artificial intelligence (인공지능을 활용한 합류부에서 수질의 공간혼합 특성 분석)

  • Lee, Seo Gyeong;Kim, Dongsu;Kim, Kyungdong;Kim, Young Do;Lyu, Siwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.482-482
    • /
    • 2022
  • 하천의 합류부에서는 수질이 다른 유체가 혼합하여 합류 전과 다른 특성을 보인다. 하천의 합류부에서 수질을 효율적으로 관리하기 위해서는 수질의 공간적인 혼합 특성을 규명하는 것이 중요하다. 합류부에서 수질의 공간적인 혼합 특성을 분석하기 위해 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기 조직화 지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하였다. 세 가지 기법을 비교하여 어떤 알고리즘이 합류부의 수질 변화 특성을 더 뚜렷하게 나타내는지 분석하였다. 수질 변화 비교 인자들은 pH, chlorophyll, DO, Turbidity 등이 있고, 수질 인자들은 YSI를 활용해 측정하였다. 자료의 측정 지역은 낙동강과 황강이 합류하는 지역이며, 보트에 YSI 장비를 부착하고 횡단하여 측정하였다. 측정한 데이터를 R 프로그램을 통해 세 가지 기법을 적용시켜 수질 변화 비교를 분석한다. 토폴로지 데이터 분석(topological data analysis, TDA)은 거대하고 복잡한 데이터로부터 유의미한 정보를 추출하는 데 사용하고, 자기조직화지도(Self-Organizing Map, SOM) 기법은 차원 축소와 군집화를 동시에 수행한다. k-평균 알고리즘(K-means clustering algorithm) 기법은 주어진 데이터를 k개의 클러스터로 묶는 머신러닝 비지도학습에 속하는 알고리즘이다. 세 가지 방법들의 주목적은 클러스터링이다. 클러스터 분석(Cluster analysis)이란 주어진 데이터들의 특성을 고려해 동일한 성격을 가진 여러 개의 그룹으로 대상을 분류하는 데이터 마이닝의 한 방법이다. 군집화 방법들인 TDA, SOM, K-means를 이용해 합류 지역의 수질 특성들을 클러스터링하여 수질 패턴들을 분석해 하천 수질 오염을 방지할 수 있을 것이다. 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기조직화지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하여 합류부에서의 수질 특성을 비교하며 어떤 기법이 합류의 특성을 더욱 뚜렷하게 나타내는지 규명했다. 합류의 특성을 군집화 방법을 이용해 알게 된다면, 합류부의 수질 변화 패턴을 다른 합류 지역에서도 적용할 수 있을 것으로 기대된다.

  • PDF

산소를 제한인자로 둔 질산화유도 반응기내의 군집변화

  • Jo, Sun-Ja;Yun, Su-Jeong;Jeong, Jae-Won;Kim, Mi-Hui;Lee, Sang-Jun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.05a
    • /
    • pp.401-402
    • /
    • 2006
  • 본 연구는 서로 다른 조건에서 질산화를 유도한 반응기의 군집동태를 살피기 위해 DGGE를 이용하여 반응기 초기의 슬러지 구성 군집의 상태와 질산화 유도후의 군집변화를 살펴보고자 하였다. DGGE의 전체 profile에 의하면 군집을 조성하는 개체군의 수가 상당히 축소되었다는 점과 비배양적인 질산화균이 여전히 많다는 점, 그리고 호기조건과 미호기/무산소 조건에 공존하는 band가 많은 것으로 볼 때 예상보다는 산소에 대해 내성이 있는 질산화균이 많다는 것을 알 수 있었다.

  • PDF