• Title/Summary/Keyword: 환경 강화

Search Result 4,291, Processing Time 0.028 seconds

해운이슈 - 국제기구 및 선진국, 해운산업에 대한 규제 점차 강화 - 최근에는 중국과 인도 등 개도국들도 규제수위 높여 -

  • 한국선주협회
    • 해운
    • /
    • no.9 s.42
    • /
    • pp.10-17
    • /
    • 2007
  • 최근들어 국제기구를 비롯하여 선진국들이 해양환경 보전과 관련한 규제를 대폭 강화하고 있는데다 중국과 인도 등 화주국가인 개도국들도 해운산업에 대한 규제수위를 높여 나감에 따라 해운경영 여건이 날로 악화되고 있다. 특히, 이같은 규제강화는 선박의 운항원가를 높여 해운기업의 채산성에도 악형향을 끼치고 있어 이에 대한 대책마련이 시급한 실정이다. 다음은 해운산업에 대한 국제기구 및 각국의 규제조치를 정리한 것이다.

  • PDF

Reinforcement Learning based Dynamic Positioning of Robot Soccer Agents (강화학습에 기초한 로봇 축구 에이전트의 동적 위치 결정)

  • 권기덕;김인철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.55-57
    • /
    • 2001
  • 강화학습은 한 에이전트가 자신이 놓여진 환경으로부터의 보상을 최대화할 수 있는 최적의 행동 전략을 학습하는 것이다. 따라서 강화학습은 입력(상태)과 출력(행동)의 쌍으로 명확한 훈련 예들이 제공되는 교사 학습과는 다르다. 특히 Q-학습과 같은 비 모델 기반(model-free)의 강화학습은 사전에 환경에 대한 별다른 모델을 설정하거나 학습할 필요가 없으며 다양한 상태와 행동들을 충분히 자주 경험할 수만 있으면 최적의 행동전략에 도달할 수 있어 다양한 응용분야에 적용되고 있다. 하지만 실제 응용분야에서 Q-학습과 같은 강화학습이 겪는 최대의 문제는 큰 상태 공간을 갖는 문제의 경우에는 적절한 시간 내에 각 상태와 행동들에 대한 최적의 Q값에 수렴할 수 없어 효과를 거두기 어렵다는 점이다. 이런 문제점을 고려하여 본 논문에서는 로봇 축구 시뮬레이션 환경에서 각 선수 에이전트의 동적 위치 결정을 위해 효과적인 새로운 Q-학습 방법을 제안한다. 이 방법은 원래 문제의 상태공간을 몇 개의 작은 모듈들로 나누고 이들의 개별적인 Q-학습 결과를 단순히 결합하는 종래의 모듈화 Q-학습(Modular Q-Learning)을 개선하여, 보상에 끼친 각 모듈의 기여도에 따라 모듈들의 학습결과를 적응적으로 결합하는 방법이다. 이와 같은 적응적 중재에 기초한 모듈화 Q-학습법(Adaptive Mediation based Modular Q-Learning, AMMQL)은 종래의 모듈화 Q-학습법의 장점과 마찬가지로 큰 상태공간의 문제를 해결할 수 있을 뿐 아니라 보다 동적인 환경변화에 유연하게 적응하여 새로운 행동 전략을 학습할 수 있다는 장점을 추가로 가질 수 있다. 이러한 특성을 지닌 AMMQL 학습법은 로봇축구와 같이 끊임없이 실시간적으로 변화가 일어나는 다중 에이전트 환경에서 특히 높은 효과를 볼 수 있다. 본 논문에서는 AMMQL 학습방법의 개념을 소개하고, 로봇축구 에이전트의 동적 위치 결정을 위한 학습에 어떻게 이 학습방법을 적용할 수 있는지 세부 설계를 제시한다.

  • PDF

A Function Approximation Method for Q-learning of Reinforcement Learning (강화학습의 Q-learning을 위한 함수근사 방법)

  • 이영아;정태충
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1431-1438
    • /
    • 2004
  • Reinforcement learning learns policies for accomplishing a task's goal by experience through interaction between agent and environment. Q-learning, basis algorithm of reinforcement learning, has the problem of curse of dimensionality and slow learning speed in the incipient stage of learning. In order to solve the problems of Q-learning, new function approximation methods suitable for reinforcement learning should be studied. In this paper, to improve these problems, we suggest Fuzzy Q-Map algorithm that is based on online fuzzy clustering. Fuzzy Q-Map is a function approximation method suitable to reinforcement learning that can do on-line teaming and express uncertainty of environment. We made an experiment on the mountain car problem with fuzzy Q-Map, and its results show that learning speed is accelerated in the incipient stage of learning.

Neuro-Fuzzy Controller Based on Reinforcement Learning (강화 학습에 기반한 뉴로-퍼지 제어기)

  • 박영철;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.395-400
    • /
    • 2000
  • In this paper, we propose a new neuro-fuzzy controller based on reinforcement learning. The proposed system is composed of neuro-fuzzy controller which decides the behaviors of an agent, and dynamic recurrent neural networks(DRNNs) which criticise the result of the behaviors. Neuro-fuzzy controller is learned by reinforcement learning. Also, DRNNs are evolved by genetic algorithms and make internal reinforcement signal based on external reinforcement signal from environments and internal states. This output(internal reinforcement signal) is used as a teaching signal of neuro-fuzzy controller and keeps the controller on learning. The proposed system will be applied to controller optimization and adaptation with unknown environment. In order to verifY the effectiveness of the proposed system, it is applied to collision avoidance of an autonomous mobile robot on computer simulation.

  • PDF

Control for Manipulator of an Underwater Robot Using Meta Reinforcement Learning (메타강화학습을 이용한 수중로봇 매니퓰레이터 제어)

  • Moon, Ji-Youn;Moon, Jang-Hyuk;Bae, Sung-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.95-100
    • /
    • 2021
  • This paper introduces model-based meta reinforcement learning as a control for the manipulator of an underwater construction robot. Model-based meta reinforcement learning updates the model fast using recent experience in a real application and transfers the model to model predictive control which computes control inputs of the manipulator to reach the target position. The simulation environment for model-based meta reinforcement learning is established using MuJoCo and Gazebo. The real environment of manipulator control for underwater construction robot is set to deal with model uncertainties.

Design and implementation of Robot Soccer Agent Based on Reinforcement Learning (강화 학습에 기초한 로봇 축구 에이전트의 설계 및 구현)

  • Kim, In-Cheol
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.139-146
    • /
    • 2002
  • The robot soccer simulation game is a dynamic multi-agent environment. In this paper we suggest a new reinforcement learning approach to each agent's dynamic positioning in such dynamic environment. Reinforcement learning is the machine learning in which an agent learns from indirect, delayed reward an optimal policy to choose sequences of actions that produce the greatest cumulative reward. Therefore the reinforcement learning is different from supervised learning in the sense that there is no presentation of input-output pairs as training examples. Furthermore, model-free reinforcement learning algorithms like Q-learning do not require defining or learning any models of the surrounding environment. Nevertheless these algorithms can learn the optimal policy if the agent can visit every state-action pair infinitely. However, the biggest problem of monolithic reinforcement learning is that its straightforward applications do not successfully scale up to more complex environments due to the intractable large space of states. In order to address this problem, we suggest Adaptive Mediation-based Modular Q-Learning (AMMQL) as an improvement of the existing Modular Q-Learning (MQL). While simple modular Q-learning combines the results from each learning module in a fixed way, AMMQL combines them in a more flexible way by assigning different weight to each module according to its contribution to rewards. Therefore in addition to resolving the problem of large state space effectively, AMMQL can show higher adaptability to environmental changes than pure MQL. In this paper we use the AMMQL algorithn as a learning method for dynamic positioning of the robot soccer agent, and implement a robot soccer agent system called Cogitoniks.

Study on the Growth Environment of 'Gangwha-mugwort' Through the Climatological Characteristic Analysis of Gangwha Region (강화지역의 기후특성 분석을 통한 '강화약쑥'의 생육 환경 연구)

  • Ahn, Joong-Bae;Hur, Ji-Na;Jung, Hae-Gon;Park, Jong-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Eupatilin, one of representative medical components of mugwort, can be efficiently extracted from the 'Gangwha Sajabalssuk'. The Eupatilin content may depend on environmental factors such as soil and regional climate in addition to a genetic factor and Gangwha region has a profitable environmental condition for the mugwort growth. In this study, the climatological characteristics of Gangwha was analyzed in order to find the environmental condition of mugwort containing high Eupatilin in term of atmospheric, oceanographic and land variables. The climate of Gangwha is characterized by the relatively low daily temperature and large diurnal variation with plenty of solar radiation, long sunshine duration and less cloudiness. According to our correlation analysis, the long sunshine duration and the large diurnal temperature variation are highly correlated with the Eupatilin contents. The result implies that Gangwha has the favorable conditions for the cultivation and the habitat of the high-Eupatilin concentrated mugwort. Because of the sea surrounding Gangwha Island with low salinity and moderate wind, the salt contained in sea breeze is relatively low compared to other regions. Furthermore, Gangwha has clean atmospheric environment compared to other regions because the concentrations of toxic gases harmful to crop growth such as nitrogen dioxide ($NO_2$), sulfite gas ($SO_2$) and fine dust (PM-10) are lower in the air. The ozone ($O_3$) concentration is moderate and within the level of natural production. It is also found that moderately coarse texture or fine loamy soils known as good for water drainage and for the growth and cultivation of the 'Gangwha-mugwort' are distributed throughout the areas around mountainous districts in Gangwha, coinciding with those of mugwort habitat.