Kim, Chan Sub;Jang, Si-Hwan;Yang, Seong-Il;Kang, Shin Jin
Journal of Korea Game Society
/
v.21
no.5
/
pp.17-28
/
2021
Reinforcement learning, in which artificial intelligence develops itself to find the best solution to problems, is a technology that is highly valuable in many fields. In particular, the game field has the advantage of providing a virtual environment for problem-solving to reinforcement learning artificial intelligence, and reinforcement learning agents solve problems about their environment by identifying information about their situation and environment using observations. In this experiment, the instant dungeon environment of the RPG game was simplified and produced and various observation variables related to the field of view were set to the agent. As a result of the experiment, it was possible to figure out how much each set variable affects the learning speed, and these results can be referred to in the study of game RPG reinforcement learning.
KIPS Transactions on Software and Data Engineering
/
v.10
no.4
/
pp.143-152
/
2021
It is very important to learn behavioral policies that allow multiple agents to work together organically for common goals in various real-world applications. In this multi-agent reinforcement learning (MARL) environment, most existing studies have adopted centralized training with decentralized execution (CTDE) methods as in effect standard frameworks. However, this multi-agent reinforcement learning method is difficult to effectively cope with in a dynamic environment in which new environmental changes that are not experienced during training time may constantly occur in real life situations. In order to effectively cope with this dynamic environment, this paper proposes a novel multi-agent reinforcement learning system, C-COMA. C-COMA is a continual learning model that assumes actual situations from the beginning and continuously learns the cooperative behavior policies of agents without dividing the training time and execution time of the agents separately. In this paper, we demonstrate the effectiveness and excellence of the proposed model C-COMA by implementing a dynamic mini-game based on Starcraft II, a representative real-time strategy game, and conducting various experiments using this environment.
Kyoung-Hun Kim;Byungsun Hwang;Joonho Seon;Soo-Hyun Kim;Jin-Young Kim
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.3
/
pp.15-20
/
2024
Path planning for unmanned aerial vehicles (UAV) is crucial in avoiding collisions with obstacles in complex environments that include both static and dynamic obstacles. Path planning algorithms like RRT and A* are effectively handle static obstacle avoidance but have limitations with increasing computational complexity in high-dimensional environments. Reinforcement learning-based algorithms can accommodate complex environments, but like traditional path planning algorithms, they struggle with training complexity and convergence in higher-dimensional environment. In this paper, we proposed a reinforcement learning model utilizing a cell decomposition algorithm. The proposed model reduces the complexity of the environment by decomposing the learning environment in detail, and improves the obstacle avoidance performance by establishing the valid action of the agent. This solves the exploration problem of reinforcement learning and improves the convergence of learning. Simulation results show that the proposed model improves learning speed and efficient path planning compared to reinforcement learning models in general environments.
Kim, Bong-Oh;Kong, Sung-Hak;Jang, Si-Young;Suh, Il-Hong;Oh, Sang-Rok
Proceedings of the KIEE Conference
/
2002.07d
/
pp.2407-2409
/
2002
강화학습이란 에이전트가 알려지지 않은 미지의 환경에서 행위와 보답을 주고받으며, 임의의 상태에서 가장 적절한 행위를 학습하는 방법이다. 만약 강화학습 중에 에이전트가 과거 문제들을 해결하면서 학습한 환경에 대한 지식을 이용할 수 있는 능력이 있다면 새로운 문제를 빠르게 해결할 수 있다. 이런 문제를 풀기 위한 방법으로 에이전트가 과거에 학습한 여러 문제들에 대한 환경 지식(Domain Knowledge)을 Local state feature라는 기억공간에 학습한 후 행위함수론 학습할 때 지식을 활용하는 방법이 연구되었다. 그러나 기존의 연구들은 주로 2차원 공간에 대한 연구가 진행되어 왔다. 본 논문에서는 환경 지식을 이용한 강화학습 알고리즘을 3차원 공간에 대해서도 수행 할 수 있도록하는 개선된 알고리즘을 제안하였으며, 제안된 알고리즘의 유효성을 검증하기 위해 초소형 비행체의 항공운항 학습에 대해 모의실험을 수행하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.35-36
/
2023
본 논문에서는 OpenAI Gym 환경에서 제공하는 Acrobot-v1에 대해 DQN(Deep Q-Networks) 강화학습으로 학습시키고, 이 때 적용되는 활성화함수의 성능을 비교분석하였다. DQN 강화학습에 적용한 활성화함수는 ReLU, ReakyReLU, ELU, SELU 그리고 softplus 함수이다. 실험 결과 평균적으로 Leaky_ReLU 활성화함수를 적용했을 때의 보상 값이 높았고, 최대 보상 값은 SELU 활성화 함수를 적용할 때로 나타났다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.622-624
/
2004
강화 학습(Reinforcement Learning)을 실제 문제에 적용하는 데 있어 가장 큰 문제는 차원성의 저주(Curse of dimensionality)였다 문제가 커짐에 따라 목적을 이루기 위해서 더 많은 단계의 판단이 필요하고 이에 따라 문제의 해결이 지수적으로 어려워지게 된다. 이를 해결하기 위해 문제를 여러 단계로 나누어 단계별로 학습하는 계층적 강화 학습(Hierarchical Reinforcement Learning)이 제시된 바 있다 하지만 대부분의 계층적 강화 학습 방법들은 사전에 문제의 구조를 아는 것을 전제로 하며 큰 사이즈의 문제를 간단히 표현할 방법을 제시하지 않는다. 따라서 이들 방법들도 실제적인 문제에 바로 적용하기에는 적합하지 않다. 최근 이루어진 복잡계 네트워크(Complex Network)에 대한 연구에 착안하여 본 논문은 자기조직화하는 생장 네트워크(Self organizing growing network)를 기반으로 한 간단한 환경 표현 모델을 사용하는 강화 학습 알고리즘을 제안한다 네트웍은 복잡계 네트웍이 갖는 성질들을 유지하도록 자기 조직화되고, 노드들 간의 거리는 작은 세상 성질(Small World Property)에 따라 전체 네트웍의 큰 사이즈에 비해 짧게 유지된다. 즉 판단해야할 단계의 수가 적게 유지되기 때문에 이 방법으로 차원성의 저주를 피할 수 있다.
Proceedings of the Korean Society of Organic Agriculture Conference
/
2009.12a
/
pp.277-278
/
2009
독일 연방작물보호법(PflSchG-Gesetz zum Schutz der Kulturpflanzen, 1986.9. 15 제정)은 식물강화제(한국의 친환경유기농자재와 동일)에 대한 정의를 3가지로 대별하여 명시하고 연방농림생물학청(BBA)에 신고를 의무화하도록 개정(1998.7. 27)하여 법률적인 근거를 마련하였다. 정부조직 개편으로 인하여 2002년 11월 1일부터 연방소비자보호 및 식품안전청(BVL)에서 유기농자재 등록 허가 업무를 주관하고 있다. 식물강화제는 작물보호법에 의하여 허가되는 농약, 생장촉진제, 작물보조제 및 비료관리법(Dungemittelgesetz)에 의한 식물영양제, 식물보조제, 작물재배 배양토 및 토양개량제 등과는 차별화하여 명시하고 있다. 식물강화제는 독일 작물보호법(PflSchG-Gesetz zum Schutz der Kulturpflanzen; Plant Protection Act) 제1장 제2조 10항에 의거하여 (1)유해생물에 대한 저항력을 높여주는 물질, (2)비기생성 피해에 대하여 식물을 보호해 주는 물질, (3)재배작물 이외의 잘려진 관상식물에 사용되는 물질로 정의하고 있다. 이러한 법률적 정의의 요지는 인간과 동물의 건강 및 자연계에 해로운 영향이 없으면서 식물체에 유해한 생물에 대하여 저항성만을 높여주는 물질을 말하며, 기상 및 환경공해 등에 의한 장해도 유해생물에 의한 것과 동일하게 간주되며 이에 대한 저항성을 높여 주는 물질도 포함시키고 있다. 식물강화제는 원칙적으로 유해생물 방제에 직접적으로 작용시키기 위한 이용목적으로 사용할 수 없으며, 단지 작물의 저항성을 높이는 경우에 한하여야 사용된다. 식물강화제의 등록 허가신청은 생산자, 판매업자 또는 수입업자가 연방소비자보호 및 식품안전청(BVL)에 신청하여야 한다. 이렇게 신청된 식물강화제는 작물보호법 제2조에 의거하여 이루어진다. 연방소비자보호 및 식품안전청의 작물보호제의 관리부서는 특별한 문제가 없는 한 4개월 이내에 등록을 허가하고 목록을 홈페이지에 목록을 공시한다. 목록공시는 통상적으로 매월 초순에 1회 게시된다. 허가 등록 절차는 맨처음 서류가 접수되면 구비서류가 완전한지 여부를 검토하여 신청서류에 문제가 없으면 4부를 복사하여 연방소비자보호 및 식품안전청(BVL, Federal Office of Consumer Protection and Food Safety), 환경청(UBA, Federal Environment Agency), 연방농림생물학청(BBA, Federal Biogical Research Centre for Agriculture and Forestry) 및 위해성평가연구소(BfR, Fedral Institute for Risk Assessment)에 우편으로 해당부서에 발송한다. 4개 기관이 검토한 내용이 서로 상이한 판단을 하였을 경우 연방소비자보호 및 식품안전청은 등록 허가결정을 하기 전에 "전문가위원회"를 개최하여 의견을 청취한다. 전문위원회는 연방농림생물청, 환경부, 위해성평가연구소 연구원 등 작물, 독성 및 환경보호 전문가 25인으로 구성되어있다. 연방소비자보호 및 식품안전청의 작물보호 제2부서(식물강화제 검토부서)는 전문위원과 검토기관의 의견을 종합하여 자체적으로 등록 허가 여부를 결정하여 제품 신청자에게 결정 내용을 통보함으로서 등록절차가 마무리 된다. 독일의 식물강화제, 즉 유기농자재는 국가에서 허가한 제품에 한하여 유기농업연구소(FiBL)에서 허용목록 책자를 만들어 유기농업단체 제공하면 단체에 따라 사용가능 유기농자재 제품을 다시 선별하여 회원에게 알려준다. 2009년 11월 30일 현재 독일의 연방소비자보호 및 식품안전청(BVL)에서 허가 공시한 식물강화제는 490개 제품에 이르고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.