• Title/Summary/Keyword: 환경친화적 기계가공

검색결과 32건 처리시간 0.026초

친환경 난삭재 절삭가공기술

  • 김동현;김광선;이춘만
    • 기계저널
    • /
    • 제52권2호
    • /
    • pp.43-47
    • /
    • 2012
  • 현재 난삭재 가공에는 연삭가공기술이 널리 쓰이고 있다. 하지만 연삭가공은 냉각액, 절삭유 등의 소모가 많아 환경에 나쁜 영향을 미치고 에너지 소모도 크다. 최근에 LAM(레이저 보조가공) 등의 기술개발이 이루어져 기존보다 더 효율적으로 난삭재를 가공할 수 있게 되었다. 이 글에서는 환경 친화적 난삭재 절삭가공기술 동향에 대해 소개한다.

  • PDF

환경 친화적 기계가공 기술에 관한 연구 선삭가공시 회전분리기구에 의한 절삭유 미립화와 환경영향(I) (A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in fuming Operation(1))

  • 황준;정의식
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.73-79
    • /
    • 2002
  • This paper presents the experimental results to verify the environmental consciousness with economic balances due to cutting fluid behaviors, effectiveness in machining process. Even though cutting fluid improves the Productivity through the cooling, lubricating effects, its environmental impact is also increased according to the cutting fluid usage. The primary mechanism considered in this study is the spin-off motion of fluids away from rotating workpiece. In this study some parameters arc adopted to analyze the productivity(tool wear), environmental impact(mist diffusion rate). The results present talc criteria for the resonable cutting fluid usage quantitative1y to develop the environmentally conscious machining process.

환경 친화적 기계가공 기술에 관한 연구 선삭가공시 회전분리기구에 의한 절삭유 미립화와 환경영향(II) (A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in fuming Operation(II))

  • 황준;정의식;황덕철
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.50-57
    • /
    • 2003
  • This paper presents the experimental results to verify the atomization characteristics and environmental impact of cutting fluid. Even though cutting fluid improves the productivity through the cooling, Lubricating effects, environmental impact due to cutting fluid usage is also increased on factory shop floor Cutting fluid's aerosol via atomization process can be affected human health risk such as lung cancer and skin diseases. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working tone under typical operational conditions. The aerosol concentration also exceeds NIOSH regulations. This research can be provided a basis of environmental impact analysis fur environmental consciousness.

환경 친화적 기계가공 기술에 관한 연구 연삭공정에서의 절삭유 미립화와 환경영향(I) (A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact in Grinding Operation (I))

  • 황준;정의식
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.61-69
    • /
    • 2005
  • This paper presents the experimental results to analyze the atomization characteristics and environmental impact of cutting fluid in grinding process. Grinding is a major machining process to improve surface quality with different machining mechanism which is compared with turning or milling process. The environmental impact due to aerosol generation via grinding process is a major concern associated with environmental consciousness. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This study can be provided a basic knowledge fur further research of environmental consciousness machining development.

환경친화적 기계가공을 위한 전략적 접근 (A Strategic Approach for Environmental Conscious Machining)

  • 황준;정의식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.847-850
    • /
    • 1997
  • This paper presents a strategy to develop the environmentally conscious machining process. To establish the knowledge the analytical and experimental methodology for he prediction of aerosol concentration due to cutting fluid atomization mechanism in machining operation. The established analytical model which is based on atomization theory analyzes the cutting fluid motion and aerosol generation in machining process. The impinging and evaporation experiments were performance to know the particle size ad evaporation rate of cutting fluid. The predictive models can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.

  • PDF

환경친화적 기계가공을 위한 기계적$\cdot$열적측면에서의 절삭유제 사용효과에 관한 연구 (A Study on the Cutting Fluid Effectiveness in Mechanical and Thermal Terms Simultaneously for Environmentally Conscious Machining)

  • 모용구;황준;정의식
    • 한국정밀공학회지
    • /
    • 제17권7호
    • /
    • pp.90-97
    • /
    • 2000
  • This paper presents a methodology to analyze the cutting fluid effectiveness in mechanical and thermal terms simultaneously using finite element method and experimental work. Cutting fluid plays many roles in metal cutting process. Mechanically-thermally coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, it can be explained that the critical behavior of cutting fluids will be able to apply optimal environmentally conscious machining process.

  • PDF

환경친화적 기계가공을 위한 절삭유 최적화에 관한 연구 (Optimization of Cutting Fluids for Environmentally Conscious Machining)

  • 황준;정의식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.948-951
    • /
    • 2000
  • This paper presents the analytical and experimental methodology for the prediction of aerosol concentration and size distribution due to cutting fluid atomization mechanism in turnining operation. The established analytical model which is based on atomization theory analyzes the cutting fluid motion and aerosol generation in machining process. The impinging and evaporation experiments were performed to know the particle size and evaporation rate of cutting fluid. The predictive models can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.

  • PDF

알루미늄 합금(AC4C.1)의 환경친화적 고속가공 특성 (Environmentally Conscious High Speed Machining Characteristics of Aluminum Alloys(AC4C.1))

  • 배정철;황인옥;강익수;김정석;강명창
    • 한국기계가공학회지
    • /
    • 제3권1호
    • /
    • pp.22-27
    • /
    • 2004
  • Recently, environmental pollution has become a significant problem in industry and many researchers have investigated in order to preserve the environment. Environmentally conscious machining and technology have more important position in machining process, because cutting fluid has bad influence on the environment in milling process. This research is the experimental study on high speed machining of aluminum alloys through environmentally conscious machining. In this study, the surface roughness and chip appearance was investigated in the machining of aluminum alloys by dry machining, using cutting fluid and oil mist.

  • PDF