• Title/Summary/Keyword: 환경적 태도

Search Result 2,236, Processing Time 0.034 seconds

Degradation Characteristics of Paper Sludge and Changes of Heavy Metals in Soil (토양중 제지슬러지의 분해 특성 및 중금속 변화)

  • Lee, Hong-Jae;Jeong, In-Ho;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.296-305
    • /
    • 1996
  • Chemical characteristics of paper sludge, degradation of the sludge in soil and $CO_2$ generation, and changes of nitrogen and heavy metals in soil treated with the sludge were investigated. The results obtained was summarized as follows: 1. Degradation rate of paper sludge in soil was 19% at room temperature, and 28% at $incubation(30^{\circ}C)$ temperature after 12-weeks treatment. 2. T-C, T-N and the C/N ratio of the sludge in soil at room temperature were 15.5%, 0.22% and 71 respectively, and 14.5%, 0.24% and 60, respectively, at $incubation(30^{\circ}C)$ temperature after 12-week treatment. 3. $CO_2$ genaration in soil treated with 1%, 3% and 5% of the sludge was 247mg/100g, 334mg/100g and 458mg/100g, respectively, at room temperature, and 385mg/100g, 550mg/100g and 618mg/100g, respectively, at incubation temperature after 12 weeks treatment. 4. Mineralization ratio of organic nitrogen in soil treated with 1%, 3% and 5% of the sludge was 8.7%, 13.4% and 16.2%, respectively, at $incubation(30^{\circ}C)$ temperature after 12-weeks treatment. 5. The amounts of DTPA-extractable Cu, Cd, Zn, Pb, and Cr in Soil treated with paper sludge were $0.7{\sim}2.2$, $0.1{\sim}0.17$, $1.4{\sim}2.8$, $1.4{\sim}2.8$, and $0{\sim}0.7mg/kg$, respectively. Mean while, those of $HNO_3$ extractable Cu, Cd, Zn, Pb, and Cr were $7.9{\sim}10.0$, $0.6{\sim}0.9$, $17.6{\sim}34.4$, $14.7{\sim}18.5$, and $5.8{\sim}9.0mg/kg$, respectively.

  • PDF

Competitive Adsorption Characteristics of Rapid Cooling Slag in Single- and Multi-Metal Solutions (단일 및 복합중금속용액에서 제강급랭슬래그의 경쟁흡착특성)

  • Park, Jong-Hwan;Kim, Hong-Chul;Kim, Seong-Heon;Lee, Seong-Tae;Kang, Byung-Hwa;Kang, Se-Won;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • BACKGROUND: Heavy metal adsorption not only depends on rapid cooling slag(RCS) characteristics but also on the nature of the metals involved and on their competitive behavior for RCS adsorption sites. The goal of this study was to investigate the competitive absorption characteristics of Cu, Cd and Zn in single- and multi-metal forms by RCS.METHODS AND RESULTS: Both single- and multi-metal adsorption experiments were conducted to determine the adsorption characteristics of RCS for the heavy metals. Adsorption behaviors of the heavy metals by RCS were evaluated using both the Freundlich and Langmuir adsorption isotherm equations. The maximum adsorption capacities of metals by RCS were in the order of Cu(16.6 mg/g) > Cd(8.1 mg/g) > Zn(6.2 mg/g) in the single-metal adsorption isotherm and Cu(14.5 mg/g) >> Zn(1.3 mg/g) > Cd(0.6 mg/g) in the multi-metal adsorption isotherm. Based on data obtained from Freundlich and Langmuir adsorption models and three-dimensional simulation, multi-metal adsorption behaviors differed from single- metal adsorption due to competition. Cadmium and Zn were easily exchanged and substituted by Cu during multi-metal adsorption.CONCLUSION: Results from adsorption experiments indicate that competitive adsorption among metals increases the mobility of these metals.

Phosphorus Adsorption Characteristic of Ferronickel and Rapid Cooling Slags (페로니켈슬래그와 제강급랭슬래그의 인 흡착특성)

  • Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Seong-Heon;Park, Min-Gyu;Kang, Byung-Hwa;Lee, Sang-Won;Lee, Seong-Tae;Choi, Ik-Won;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.3
    • /
    • pp.169-177
    • /
    • 2014
  • BACKGROUND: The ferronickel and rapid cooling slags used in present study are industrial wastes derived from a steel factory in Korea. These slags are used as almost road construction materials after magnetic separation. However, the use of slag to remove phosphorus from wastewater is still a relatively less explored. The objective of this work was to evaluate the feasibility of ferronickel slag (FNS) and rapid cooling slag (RCS) as sorbents for phosphorus removal in wastewater. METHODS AND RESULTS: Adsorption experiments were conducted to determine the adsorption characteristics of the FNS and RCS for the phosphorus. Adsorption behaviour of the phosphorus by the FNS and RCS was evaluated using both the Freundlich and Langmuir adsorption isotherm equations. FNS and RCS were divided into two sizes as effective sizes. Effective sizes of FNS and RCS were 0.5 and 2.5 mm, respectively. The adsorption capacities (K) of the phosphorus by the FNS and RCS were in the order of RCS 0.5 (0.5105) > RCS 2.5 (0.3572) ${\gg}$ FNS 2.5 (0.0545) ${\fallingdotseq}$ FNS 0.5 (0.0400) based on Freundlich adsorption isotherm. The maximum adsorption capacities (a; mg/kg) of the phosphorus determined by the Langmuir isotherms were in the order of RCS 0.5 (3,582 mg/kg) > RCS 2.5 (2,983 mg/kg) > FNS 0.5 (320 mg/kg) ${\fallingdotseq}$ FNS 2.5 (187 mg/kg). RCS 0.5 represented the best sorbent for the adsorption of phosphorus. In the experiment, the Langmuir model showed better fit with our data than the Freundlich model. CONCLUSION: This study indicate that the use of RCS in constructed wetlands or filter beds is a promising solution for phosphorus removal via adsorption and precipitation mechanisms.

Properties of Water Quality and Land Use at the Rural Area in the Nakdong River Watershed (낙동강수계 농촌유역의 토지이용 및 수질 특성)

  • Kim, Jin-Ho;Kim, Chan-Yong;Lee, Seong-Tae;Choi, Chul-Mann;Jung, Goo-Bok;Lee, Jong-Sik;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.99-106
    • /
    • 2007
  • This study was focused on understanding the agricultural non-point sources pollution in 72 rural catchments of Nakdong river watershed from 2001 to 2005 every two year. Also. Pearson correlations between water quality and basin characteristic were computed. Water quality of this study watershed was better in 2003 than any other period. The water quality of upstream was recorded from 0.040 to 0.510 dS/m in EC, from 3.55 to 22.60 mg/L in DO, from 0.32 to 16.64 mg/L in T-N, from 0.00 to 12.21 mg/L in $NO_3-N$, from 0.000 to 0.860 mg/L in T-P, and from 0.000 to 0.640 mg/L in $PO_4-P$. A the downstream, EC was measured from 0.030 to 0.520 dS/m, DO from 4.13 to 18.36 mg/L, T-N from 0.38 to 26.88 mg/L, $NO_3-N$ from 0.10 to 20.12 mg/L, T-P from 0.002 to 0.820 mg/L, $PO_4-P$ from 0.002 to 0.690 mg/L. But there was no difference between upstream and downstream for the water quality. Based on the correlation analysis between water quality and land use, correlation between BOD and residential was the highest positive correlation of 0.541 (p<0.01), and correlation between $PO_4-P$ and forest was the highest negative correlation of -0.451 (p<0.01). Also, T-N, $NO_3-N$, and pH were not correlated with all basin characteristics and basin was not correlated with all water quality parameter. According to the correlation residential was causative of growing worst for water quality, and forest was causative of improving for water quality.

Treatment of Cu(II)-EDTA using Solar/$TiO_2$ Photocatalysis (태양광/$TiO_2$ 광산화를 이용한 Cu(II)-EDTA의 제거)

  • Shin, In-Soo;Lee, Seung-Mok;Yang, Jae-Kyu;Shin, Won-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.163-169
    • /
    • 2005
  • Photocatalytic oxidation of Cu(II)-EDTA has been studied using solar/$TiO_2$ photocatalysis as an energy source. Photocatalysis efficiency on the treatment of Cu(II)-EDTA was investigated using different types of solar collectors as well as by variation of the angles of solar collector solar light intensities, flow rates, and areas of solar collector. effect of $H_2O_2$ and types of $TiO_2$ catalyst on the treatment of Cu(II)-EDTA was also investigated. Removal of Cu(II) and DOC was favorable with a hemispherical collector than with a flat collector Removal of Cu(II) and DOC increased with increasing angles of solar collector up to $38^{\circ}$. Slurry type $TiO_2$ showed four-times higher removal efficiency than immobilized type $TiO_2$. Removal of both Cu(II) and DOC at a clear sky of solar light intensity ranging from 0.372 to $2.265\;mW/cm^2$ was greater than removal at a cloudy day of solar light intensity ranging from 0.038 to $1.129\;mW/cm^2$. From the result of this research that the removal efficiency of Cu(II) and DOC increased as the solar light intensity increased, it can be inferred that quantum yield in the destruction of Cu(II)-EDTA may directly related with the solar light intensity. Removal of Cu(II) increased as increasing the area of solar collector and was similar at lower flow rates white removal of Cu(II) was interfered at higher flow rates. When immobilized $TiO_2$ was used, removal efficiency of Cu(II) increased in the presence of $H_2O_2$ while negligible effect was found in the use of $TiO_2$ slurry.

Effects of Seed Coating and Molding on Seed Germination and Seedling Growth of Rehabilitating Plants in Forest Road Slopes (임도 비탈면 녹화식물의 종자피복 및 복토처리가 발아와 생장에 미치는 영향)

  • Lee, Byung-Tae;Park, Chong-Min
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.4
    • /
    • pp.436-447
    • /
    • 2006
  • Recently, there is increasing demand on enhancing the efficiency of hydro-seed spraying in afforestation for damaged or degraded land including forest road slopes. In this study, we focus on how seed coating and molding may affect seed germination and seedling growth. Plant species used in the study are Lespedeza cyrtobotrya, Indigofera pseudotinctoria, Arudineila hirta, Poa pratensis, and Lolium perenne. The results of seed germination and seedling growth with and without seed coating and molding are analyzed as follows: 1. For all the species and in both seeding with molding covered with soil and seeding without molding in which seeds were over sown, the increment of germination ratio by seed coating method is greater than by non·coating one. Seed coating increases average germination ratios observed in seeding with molding and without molding by 11.2% and 21.4%, respectively. Germination force may decrease from 0.8 to 3.7 days depending on the plant species and the treatments. The $LD_{50}$ decreased by $0.8{\sim}2.6$ days. However, seed coating delays the start of germination by approximate 1 day for all of the observed plants. 2. Seed coating may have the effect of accelerating the growth of stem and leaf and root. The experimental result shows that seed coating leads to 21.7% and 34.8% increment of average stem and leaf growth by seeding with molding and without molding, respectively. In terms of root growth, seeding with molding results in 22.0% increment while seeding without molding produces 26.2% increased root growth. 3: Compared to seeding without molding, germination starts on an average of 1.3 days later in seeding coated seeds with molding. However. the germination ratio is increased by 5%, and germination force and $LD_{50}$ are observed to shorten by 1.0 day and 1.4 days, respectively. Meanwhile, whether seeds are coated or not may be more related with germination and seedling growth in seeding without molding than with those in seeding with molding. 4. In this study, coating materials are examined to look at which ones are better in each treatment. Coating with Vermiculite+Talcum is the most effective in germination and seedling growth for overall plants. Seed coating using Bentonite, Calcium Carbonate, and Calcium Hydroxide shows better results than non-coating does. 5. When seeds are coated, the greatest enhancement of seed germinations was observed in Indigofera pseudotinctoria and, in the case of seedling growth, Lespedeza cyrtobotrya has the most increasing observation value among the 5 examined species. These results may indicate that woody plant seeds, having greater sizes of seeds than ones of grass seeds, may have greater relation with seed coating than grass plant seeds may have. 6. Therefore, if seeds cannot be molded up after hydro-seeding on forest road slopes, it is recommended that seeds for restoration be pre-coated with Vermiculite+Talcum and then be sowed, in order to quickly stabilize the damaged slope and achieve successful afforestation.

Charaterization of Biomass Production and Wastewater Treatability by High-Lipid Algal Species under Municial Wastewater Condition (실제 하수조건에서 고지질 함량 조류자원의 생체생성과 하수처리 특성 분석)

  • Lee, Jang-Ho;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.333-340
    • /
    • 2010
  • Wastewater treatment using algal communities and biodiesel production from wastewater-cultivated algal biomass is a promising green growth technology. In literature, there are many studies providing information on algal species producing high content of lipid. However, very little is known about adaptability and wastewater treatability of such high-lipid algal species. In this study, we attempted to characterize algal biomass production and wastewater treatability of high-lipid algal species under municipal wastewater condition. For this, four known high-lipid algal strains including Chlorella vulgaris AG 10032, Ankistrodesmus gracilis SAG 278-2, Scenedesmus quadricauda, and Botryococcus braunii UTEX 572 were individually inoculated into municipal wastewater where its indigenuous algal populations were removed prior to the inoculation, and the algae-inoculated wastewater was incubated in the presence of light source (80${\mu}E$) for 9 days in laboratory batch reactors. During the incubations, algal biomass production (dry weight) and the removals of dissolved organics (COD), nitrogen and phosphorous were measured in laboratory batch reactors. According to algal growth results, C. vulgaris, A. gracilis and S. quadricauda exhibited faster growth than indigenuous wastewater algal populations while B. braunii did not. The wastewater-growing strains exhibited efficient removals of total-N, ${NH_4}^+$-N, Total-P and ${PO_4}^{3-}$-P which satisfy the Korea water quality standards for effluent from municipal wastewater treatment plants. A. gracilis and S. quadricauda exhibited efficient and stable treatability of COD but C. vulgaris showed unstable treatability. Taken together with the results, A. gracilis and S. quadricauda were found to be suitable species for biomass production and wastewater treatment under municipal wastewater condition.

Quality of Surface Water for lrrigation around Controlled Horticultural Area in Gyeongnam (경남지방 시설원예지 농업용 지표수의 수질 현황)

  • Heo, Jong-Soo;Ha, Yeong-Rae;Seo, Jeoung-Yoon;Cho, Ju-Sik;Lee, Sung-Tae;Lee, Hong-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.356-364
    • /
    • 1997
  • To investigate the water quality status of agricultural water source for greenhouse area in Gyeongnam, the surface water quality was examined six times from October in 1995 to March in 1996 at five areas in Gyeongnam. The pH values of surface water were in the range of 6.6${\sim}$9.1 pH in Kimhae and Changnyong areas were out of range in 6.0${\sim}$8.5 which was water quality standard for agriculture. The DO values of surface water were relatively high with average 10.0mg/l in Kimhae, Changnyong, Sacheon and Chinju areas except for Haman area. The BOD values of surface water exceeded water quality standard for agriculture(8.0mg/l) in three sites and one site in Haman and Sacheon, respectively. The COD values of surface water exceeded water quality standard for agriculture(8.0mg/l) in Kimhae, Changnyong and Haman. The ${NH_4}^+-N$ values in surface water of Changnyong and Haman areas were 1.21mg/l and 2.75mg/l, respectively. The average values of $NO_3\;^--N$ in surface water was appropriate for agriculture. The values of $K^+,\;Na^+,\;Mg^{2+},\;Ca^{2+},\;{PO_4}^{3-}$ and $SO_4^{2-}$ in Haman were the highest of those of the others. And Pb was below 0.1mg/l which was water quality standard for agriculture. The average values of Cu, Cd and Zn were below water quality standard for agriculture. Between COD and SS in surface water was positively correlated with r$=0.799^{{\ast}{\ast}}$. BOD in surface water was positively correlated with $NH_4\;^+-N,\;PO_4\;^{3-},\;SS,\;K^+,\;Na^+$ and $Cl^-$. Surface water pollution status of agricultural water source of greenhouse areas in Gyeongnam was in order of Chinju< Sacheon< Kimhae< Changnyong< Haman area.

  • PDF

Evaluation of Removal Efficiencies of Heavy Metals Using Brown Seaweed Biosorbent Under Different Biosorption Systems (폐미역을 이용한 생물흡착 시스템별 중금속 제거 효율 평가)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kim, Sung-Un;Kang, Se-Won;Lee, Jun-Bae;Lim, Byung-Jin;Kang, Seok-Jin;Jeon, Weon-Tai;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.310-315
    • /
    • 2011
  • BACKGROUND: Heavy-metal pollution represents an important environmental problem due to the toxic effects of metals, and their accumulation throughout the food chain leads to serious ecological and health problems. METHODS AND RESULTS: Optimum conditions in continuous-flow stirred tank reactor (CSTR) and packedbed column contactor (PBCC) using brown seaweed biosorbent were investigated. Under optimum conditions from both lab-scale biosorbent systems, removal efficiency of copper (Cu) in a large-scale PBCC system was investigated. Removal capacity of Cu using brown seaweed biosorbent in a lab-scale CSTR system was higher than that in a lab-scale PBCC system. On the other hand, over 48 L/day of flow rate in Cu solution, removal efficiency of Cu in a lab-scale PBCC system was higher than that in a lab-scale CSTR system. Optimum flow rate of Cu was 24 L/day, optimum Cu solution concentration was 100 mg/L. Removal capacity of Cu at different stages was higher in the order of double column biosorption system > single column biosorption system. Under different heavy metals, removal capacities of heavy metal were higher in the order of Pb > Cr > Ni > Mn ${\geq}$ Cu ${\geq}$ Cd ${\fallingdotseq}$ Zn ${\geq}$ Co. Removal capacity of Cu was 138 L in a large-scale PBCC system. Removal capacity of Cu a large-scale PBCC system was similar with in a lab-scale PBCC system. CONCLUSION(s): Therefore, PBCC system using brown seaweed biosorbent was suitable for treating heavy metal wastewater.

Growth, Yield, and Leaf-macronutrient Content of Grafted Cherry Tomatoes as Influenced by Rootstocks in Semi-forcing Hydroponics (반촉성 수경재배시 대목에 따른 방울토마토 접목묘의 생육, 수량 및 엽 내 양분 함량)

  • Hyewon Lee;Hyo Bong Jeong;Jun Gu Lee;Indeok Hwang;Deok Ho Kwon;Yul Kyun Ahn
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.40-47
    • /
    • 2023
  • There are many different types of cultivation in tomatoes for year-round production. One of them, semi-forcing cultivation is characterized by growing seedlings in winter season. If grafted seedlings are used in winter season that energy cost can be reduced, because they have tolerance to cold stress. This study was conducted to analyze the rootstock performance by measuring the growth, yield, and leaf-macronutrient content of cherry tomatoes grown in semi-forcing hydroponics. Three domestic rootstocks 'HSF4', '21LM', '21A701', and a control cultivar 'B-blocking' were grafted onto jujube-shaped cherry tomato (Lycopersicon esculentum L.) commercial cultivar 'Nonari'. The total yield per plant with grafted cherry tomato '21A701' was 3,387g, which was 11%, 22% and 24% higher than the yield with 'B-blocking', non-grafted one and 'HSF4'. The stem diameter of '21A701' was thick with 8.26mm, whereas non-grafted one was thin with 7.23mm at 160 days after transplanting. The flowering position of '21LM' was 34% and 47% higher than the flowering position of 'B-blocking' and non-grafted one at 153 days after transplanting. The NO3-N concentration in petiole sap of '21LM' was the highest with 1,746mg·L-1 and non-grafted one and 'HSF4' were the lowest with 1,252mg·L-1 and 1,245mg·L-1 at 167 days after transplanting. The results indicated that rootstock/scion combinations in cherry tomatoes can affect the plant growth, yield, and the concentration of different NO3-N in leaves at the late growth stage. Both '21A701' and '21LM' have vigorous root system, which influence the growth and yield increased.