• Title/Summary/Keyword: 환경유지유량

Search Result 347, Processing Time 0.028 seconds

Assessment of Ecological Streamflow for Maintaining Good Ecological Water Environment (수생태 환경유지를 위한 하천생태유량 산정)

  • Jung, Chung-Gil;Lee, Ji-Wan;Ahn, So-Ra;Hwang, Soon-Jin;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.1-12
    • /
    • 2016
  • The objective of this study is to analyze the relationship between stream water quality of TN (total nitrogen), TP (total phosphorus), and BOD (Biochemical Oxygen Demand) and TDI (Trophic Diatom Index) score determined by physico-chemical factors, biomass, and standing crops of epilithic diatoms, and to estimate the required amount of ecological streamflow for good water environment of Trophic Diatom. For the main stream of Chungju dam watershed of South Korea, total 100 field data of 3 years (2008~2010) measured in May and September were used to derive the relationship between water quality and TDI. Trophic Diatom had high correlation (0.55 determination coefficient) with TN. Using the relationship, the required streamflow was evaluated by using the Soil Water Assessment Tool (SWAT) for good Trophic Diatom water environment through T-N water quality maintenance. The SWAT simulated 8 years (2003~2010) stream discharges and T-N water quality along the main stream. From present garde C (score range: 30.0~45.0) to grade A (score above 60.0) of TDI, the May needs additional streamflow of $63.1m^3/sec$ (+36.7 % comparing with the present streamflow of $172.0m^3/sec$) at the watershed outlet.

Case study: Analysis of flow characteristic and deposition on abandoned channel (Case Study: 구하도 복원수로의 흐름특성과 퇴적경향 분석)

  • Yeo, Hong-Koo;Kang, Joon-Gu;Lee, Keum-Chan;Kwon, Bo-Ae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1822-1826
    • /
    • 2009
  • 최근 국내 하천복원사업의 방향(패러다임)이 구하도를 포함한 홍수터의 중요성을 인식하게 됨에따라 과거 하천사업 시 발생되었던 폐천구역을 가능한 한 하천구역에 편입하여 보존하려는 노력이 시도되고 있다. 본 연구는 하천복원사업의 일환으로 함평천 구하도 복원을 함으로써 발생할 수 있는 흐름특성변화 및 하상변화를 파악하기 위한 목적으로 수리모형실험과 수치모의를 수행하였다. 실험대상구간은 함평천 중류 구하도 복원구간(1.34 km)이며, 수리모형은 Froude 상사법칙에 따라 수평축척 1/50, 연직축척 1/25의 모형으로 제작하였다. 실험조건으로는 재현기간 50년, 100년의 홍수량과 강턱유량 두 케이스$(100\;m^3/s$, $120\;m^3/s)$를 적용하였고, 구하도 복원수로의 흐름특성은 고정상 조건에 대해 분석하였다. 구하도 복원전/후의 홍수위 비교를 통해 구하도 복원후의 하도에서는 단면확대로 인한 통수능 증가로 홍수위 저감효과를 확인 할 수 있었다. 구하도 복원후의 유속변화는 통수능의 증가로 복원전에 비해 저감되었다. 기존하도와 복원하도간의 유속차가 다소 크게 나타났는데 이는 복원하도의 단면형상과 와류발생으로 인해 나타난 것으로 판단된다. 복원하도내의 유황은 일부구간에서 흐름정체현상과 역류현상이 발생되는데 이 구간에는 퇴적현상이 예측된다. 수리모형실험의 유사퇴적경향과 FESWMS 모형의 하상전단력을 비교한 결과는 유사하게 나타났으며, 복원하도의 넓은 둔치지역에 넓은 퇴적층이 형성되어 차후 환경구조물 등을 이용한 흐름제어 및 유지관리대책에 의한 문제해결이필요할 것으로 판단된다.

  • PDF

Three-Dimensional Modeling and Simulation of a Phosphoric Acid Fuel Cell Stack (인산형 연료전지 스택에 대한 3차원 모델링 및 모사)

  • An Hyun-shik;Kim Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.40-48
    • /
    • 2000
  • A fuel cell is an electrochemical device continuously converting the chemical energy in a fuel and an oxidant to electrical energy by going through an essentially invariant electrode-electrolyte system. Phosphoric acid fuel cell employs concentrated phosphoric acid as an electrolyte. The cell stack in the fuel cell, which is the most important part of the fuel cell system, is made up of anode where oxidation of the fuel occurs cathode where reduction of the oxidant occurs; and electrolyte, to separate the anode and cathode and to conduct the ions between them. Fuel cell performance is associated with many parameters such as operating and design parameters associated with the system configuration. In order to understand the design concepts of the phosphoric fuel cell and predict it's performance, we have here introduced the simulation of the fuel-cell stack which is core component and modeled in a 3-dimensional grid space. The concentration of reactants and products, and the temperature distributions according to the flow rates of an oxidant are computed by the help of a computational fluid dynamic code, i.e., FLUENT.

  • PDF

A Study on the Combustion Characteristics of a Generator Engine Running on a Mixture of Syngas and Hydrogen (발전용 합성가스 엔진의 수소 혼합 비율에 따른 연소 특성 연구)

  • Park, Seung-Hyun;Park, Cheol-Woong;Lee, Sun-Youp;Kim, Chang-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.693-699
    • /
    • 2011
  • Internal combustion engines running on syngas, which can be obtained from biomass or organic wastes, are expected to be one of the suitable alternatives for power generation, because they are environment-friendly and do not contribute to the depletion of fossil fuels. However, syngas has variable compositions and a lower heating value than pure natural gas, owing to which the combustion conditions need to be adjusted in order to achieve stable combustion. In this study, a gas that has the same characteristics as syngas, such as low heating value (LHV), was produced by mixing $N_2$ with compressed natural gas (CNG). In addition, this study investigates the combustion characteristics of syngas when it is mixed with hydrogen in a ratio ranging from 10% to 30% with a constant LHV of total gas.

Volume Variation of Liquid Fuel by Seasonal, Regional Temperature Changes (계절적, 지역적 온도 변화에 따른 석유류 체적의 변화)

  • Lim, Ki Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.155-163
    • /
    • 2014
  • At gas stations, liquid fuels expand and contract in volume owing to temperature variations. In Korea, the ambient temperature varies between $-15^{\circ}C$ in winter and $35^{\circ}C$ in summer. The volume expansion coefficients of liquid fuels are about $0.1%/^{\circ}C$. To investigate this issue, we measured daily changes in fuel temperature and the delivered fuel temperature at gas stations. In addition, we scrutinized the daily, monthly, and annual changes in temperature over past 50 years in Korea. The results show that the temperature of the fuel in the storage tank was maintained at a stable value(summer or winter). Many factors, such as the surrounding conditions, fuel filling frequency, and gas station location, influence the delivered fuel temperature. The results of this study can be applied for establishing a national regulation and will contribute to fair transactions.

Experimental Evaluation of Hydrophilic Membrane Humidifier with Isolation of Heat Transfer Effect (친수성 막을 통한 수분 전달 특성 연구)

  • Tak, Hyun Woo;Kim, Kyoung Teck;Han, Jae Young;Im, Seok Yeon;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.815-821
    • /
    • 2013
  • The efficiency and lifetime of a polymer electrolyte membrane fuel cell (PEMFC) system is critically affected by the humidity of the incoming gas, which should be maintained properly under normal operating conditions. Typically, the incoming gas of a fuel cell is humidified by an external humidifier, but few studies have reported on the device characteristics. In this study, a laboratory-scale planar membrane humidifier is designed to investigate the characteristics of water transport through a hydrophilic membrane. The planar membrane humidifier is immersed in a constant temperature bath to isolate the humidifier from the effect of temperature variations. The mass transfer capability of the hydrophilic membrane is first examined under isothermal conditions. Then, the mass transfer capability is investigated under various conditions. The results show that water transport in the hydrophilic membrane is significantly affected by the flow rate, operating temperature, operating pressure, and flow arrangement.

Comparison of Water Supply Reliability by Dam Operation Methods (댐 운영방식에 따른 이수안전도의 비교)

  • Choi, Si Jung;Lee, Dong-Ryul;Moon, Jang Won
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.6
    • /
    • pp.523-536
    • /
    • 2014
  • A water supply reliability is mainly influenced by water demand, reservoir storage, and inflow change caused from drought. The water supply reliability can vary depending on the method of dam operation. In Korea, the deficit-supply method which complements water deficit as water shortage occurs in downstream areas has been used for the national water resources master plan using K-WEAP, but the prime flow method, an alternative approach, would show different results of water supply reliability in comparison to the deficit-supply method. The objective of this research is to compare and analyze differences in water supply reliability according to dam operation methods. These results can be used to re-evaluate water supply reliability of dam in a circumstance considering steady dam release for instreamflow in downstream and hydroelectric power generation.

Estimating Attributes Value of Alternatives Applied for Rehabilitation of Hydrologic Cycle of the Anyangcheon Watershed (물순환 건전화 대안 적용을 위한 안양천의 속성별 가치추정)

  • Kong, Ki-Seo;Chung, Eun-Sung;Lee, Kil-Seong;Yoo, Jin-Chae
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.1031-1042
    • /
    • 2006
  • In recent years, a growing concern exists in watershed and stream improvement projects. Under these circumstances, this paper estimates monetary value of the attributes of alternatives for rehabilitation of hydrologic cycle using choice experiments. Choice experiments shows vivid image and estimates a willingness to pay based on their preference for environmental goods. A preliminary survey shows that the attributes of the Anyangcheon watershed are flood-damage possibilities, Instreamflow, water quality, river characteristic and estimates the tax for the Anyangcheon watershed improvements. We surveyed 200 citizens were selected as samples of watershed beneficing in Seoul and Gyeonggi Province and used conditional logit model to analyze the implicit values of the attributive per household. The benefit of the attributes by province based on the implicit price obtained from estimated parameters were calculated. This study is expected to contribute to the decision-making process for policy-makers by providing useful methodological framework and quantitative information related to watershed improvement projects.

Hotspot analysis by water circulation evaluation elements of watershed (유역 물순환 평가 요소별 핫스팟 분석)

  • Kim, Sinae;Kim, Seokhyeon;Kim, Hakkwan;Kim, Kyeung;Lee, Hyunji;Kang, Moon-Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.464-464
    • /
    • 2021
  • 우리나라는 최근 도시지역의 광역화로 인해 시가화 지역이 지속적으로 증가하고 있으며, 이로 인해 증가한 불투수면적은 이수 및 치수 측면에서 다양한 문제를 야기하여 유역의 물순환 체계를 왜곡하고 있다. 더불어 하천의 건천화에 따른 하천 유지유량의 감소 및 공공수역으로 방출되는 오염물질의 증가는 하천의 다양한 환경적, 생태학적 문제를 야기하고 있다. 따라서 최근에는 유역 물순환 관리가 국가 물관리 정책의 핵심 전략으로 부각되고 있으며, 적절한 물순환 관리를 위해서는 물순환 건전성이 취약한 우선관리 유역을 도출하고, 해당 유역을 중심으로 보다 체계적이고 통합적인 유역관리 기술이 필요하다. 따라서 본 연구에서는 유역 물순환에 영향을 미치는 주요 요소들을 기후, 수문, 수질 및 사회·경제적 요인 측면으로 구분하고, Pressure-State-Response (PSR) framework를 적용하여 각 요소 별 주요 평가 지표들을 압력 (Pressure), 상태 (State) 및 반응(Reponse) 요인으로 분류하였다. 또한 전국 소권역 단위에 대하여 각 지표들을 분석하여 기후, 수문, 수질 및 사회·경제적요인 별 물순환 건강성 점수를 산정하였다. 한편, 지역 및 요인별 물순환 건강성 점수를 기반으로 핫스팟 분석 (Hot Spot Analysis)을 수행하여, 통계적으로 유의미한 패턴을 나타내는 지역을 중심으로 우선관리가 필요한 지역을 도출하였다. 본 연구에서 도출한 물순환 건강성 평가 요소별 점수 및 핫스팟 분석 결과는 향후 물순환 우선관리 지역 선정에 있어 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

Characteristics of Titanium Dioxide-Impregnated Fibrous Activated Carbon and Its Application for Odorous Pollutant (이산화티타늄 담지 섬유형 활성탄소의 특성 및 악취오염물질 제어를 위한 응용)

  • Jo, Wan-Kuen;Hwang, Eun-Song;Yang, Sung-Bong
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2011
  • The application of fibrous activated carbon (FAC)-titanium dioxide ($TiO_2$) hybrid system has not been reported yet for the control of malodorous dimethyl sulfide (DMS) at residential environmental levels. Accordingly, the current study was designed not only to characterize this hybrid system using x-ray diffraction method, particulate surface measurement and Fourier transform Infrared (FTIR) method, but also to evaluate its adsorptional photocatalytic activity (APA) for the DMS removal. The physical/surface characteristics of FAC-$TiO_2$ which was prepared in this study suggested that the hybrid material might have certain APA for DMS. The Brunauer-Emmett-Teller (BET) specific area, total pore volume, micropore volume and mesopore volume decreased all as the $TiO_2$ amounts coated on FAC increased, whereas the reverse was true for average pore diameter. $TiO_2$ coated onto FAC did not influence the adsorptional activity of FAC for the DMS input concentration of 0.5 ppm. The APA test of the hybrid material presented that the initial removal efficiencies of DMS were 93, 78, 71 and 57% for the flow rates of 0.5, 1.0, l.5 and 2.0 L/min, respectively, and they decreased somewhat 2 h after the experiment started and kept almost constant for the rest experimental period. Under this pseudo-equilibrium condition, the DMS removal efficiencies were 78, 58, 53 and 36% for the four flow rates, respectively. Meanwhile, there were no significant byproducts observed on the surfaces of the hybrid material. Consequently, this study suggests that, under the experimental conditions used in the present study, the hybrid material can be applied for DMS at residential environment levels without being interfered by any byproducts.