• Title/Summary/Keyword: 환경온도

Search Result 6,073, Processing Time 0.029 seconds

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF

Response of Potassium on Main Upland Crops (주요(主要) 전작물(田作物)에 대(對)한 가리성분(加里成分)의 비교(肥效))

  • Ryn, In Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.171-188
    • /
    • 1977
  • The response and effect on main upland crops to potassium were discussed and summarized as follows. 1. Adequate average amounts of potash per 10a were 32kg for forage crop; 22.5kg for vegetable crops; 17.3kg for fruit trees; 13.3kg for potatoes; and 6.5kg for cereal crops. Demand of potassium fertilizer in the future will be increased by expanding the acreage of forage crops, vegetable crops and fruit trees. 2. On the average, optimum potash rates on barley, wheat, soybean, corn, white potato and sweet potato were 6.5, 6.9, 4.5, 8.1, 8.9, and 17.7kg per 10a respectively. Yield increaments per 1kg of potash per 10a were 4-5kgs on the average for cereal crops, 68kg for white potato, and 24kg for sweet potato. 3. According to the soil testing data, the exchangeable potassium in the coastal area was higher than that in the inland area and medium in the mountainous area. The exchangeable potassium per province in decreasing order is Jeju>Jeonnam>Kangweon>Kyongnam. Barley : 4. The response of barley to an adequate rate of potassium seemed to be affected more by differences in climatic conditions than to the nature of the soil. 5. The response and the adequate rate of potassium in the southern area, where the temperature is higher, were low because of more release of potassium from the soil. However, the adequate rate of phosphorus was increased due to the fixation of applied phosphorus into the soil in high temperature regions. The more nitrogen application would be required in the southern area due to its high precipitation. 6. The average response of barley to potassium was lower in the southern provinces than northern provinces. Kyongsangpukdo, a southern province, showed a relatively higher response because of the low exchangeable potassium content in the soil and the low-temperature environment in most of cultivation area. 7. Large annual variations in the response to and adequate rates of potassium on barley were noticed. In a cold year, the response of barley to potassium was 2 to 3 times higher than in a normal year. And in the year affected by moisture and drought damage, the responses to potassium was low but adequate rates was higher than cold year. 8. The content of exchangeable potassium in the soil parent materials, in increasing order was Crystalline Schist, Granite, Sedimentary and Basalt. The response of barley to potash occurred in the opposite order with the smallest response being in Crystalline Schist soil. There was a negative correlation between the response and exchangeable potassium contents but there was nearly no difference in the adequate rates of potassium. 9. Exchangeable potassium according to the mode of soil deposition was Alluvium>Residium>Old alluvium>Valley alluvium. The highest response to potash was obtained in Valley alluvium while the other s showed only small differences in responses. 10. Response and adequate rates of potassium seemed to be affected greatly by differences in soil texture. The response to potassium was higher in Sandy loam and Loam soils but the optimum rate of potassium was higher in Clay and Clay loam. Especially when excess amount of potassium was applied in Sandy loam and Loam soils the yield was decreased. 11. The application of potassium retarded the heading date by 1.7 days and increased the length of culm. the number of spikelet per plant, the 1,000 grain weight and the ratio of grain weight to straw. Soybean : 12. Average response of soybean to potassium was the lowest among other cereal crops but 28kg of grain yield was incrased by applying potash at 8kg/10a in newly reclaimed soils. 13. The response in the parent materials soil was in the order of Basalt (Jeju)>Sedimentay>Granite>Lime stone but this response has very wide variations year to year. Corn : 14. The response of corn to potassium decreased in soils where the exchangeable potassium content was high. However, the optimum rate of applied potassium was increased as the soil potassium content was increased because corn production is proportional to the content of soil potassium. 15. An interaction between the response to potassium and the level of phosphorus was noted. A higher response to potassium and higher rates of applied potassium was observed in soils contained optimum level of phosphorus. Potatoes : 16. White potato had a higher requirement for nitrogen than for potassium, which may imply that potato seems to have a higher capability of soil potassium uptake. 17. The yield of white potato was higher in Sandy loam than in Clay loam soil. Potato yields were also higher in soils where the exchangeable potassium content was high even in the same soil texture. However, the response to applied potassium was higher in Clay loam soils than in Sandy loam soils and in paddy soil than in upland soil. 18. The requirement for nitrogen and phosphorus by sweet potato was relatively low. The sweet potato yield is relatively high even under unfavorable soil conditions. A characteristics of sweet potatoes is to require higher level of potassium and to show significant responses to potassium. 19. The response of sweet potato to potassium varied according to soil texture. Higher yields were obtained in Sandy soil, which has a low exchangeable potassium content, by applying sufficient potassium. 20. When the optimum rate of potassium was applied, the yields of sweet potato in newly reclaimed soil were comparable to that in older upland soils.

  • PDF