• Title/Summary/Keyword: 환경빅데이터

Search Result 1,072, Processing Time 0.018 seconds

A Study of Life Safety Index Model based on AHP and Utilization of Service (AHP 기반의 생활안전지수 모델 및 서비스 활용방안 연구)

  • Oh, Hye-Su;Lee, Dong-Hoon;Jeong, Jong-Woon;Jang, Jae-Min;Yang, Sang-Woon
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.864-881
    • /
    • 2021
  • Purpose: This study aims is to provide a total care solution preventing disaster based on Big Data and AI technology and to service safety considered by individual situations and various risk characteristics. The purpose is to suggest a method that customized comprehensive index services to prevent and respond to safety accidents for calculating the living safety index that quantitatively represent individual safety levels in relation to daily life safety. Method: In this study, we use method of mixing AHP(Analysis Hierarchy Process) and Likert Scale that extracted from consensus formation model of the expert group. We organize evaluation items that can evaluate life safety prevention services into risk indicators, vulnerability indicators, and prevention indicators. And We made up AHP hierarchical structure according to the AHP decision methodology and proposed a method to calculate relative weights between evaluation criteria through pairwise comparison of each level item. In addition, in consideration of the expansion of life safety prevention services in the future, the Likert scale is used instead of the AHP pair comparison and the weights between individual services are calculated. Result: We obtain result that is weights for life safety prevention services and reflected them in the individual risk index calculated through the artificial intelligence prediction model of life safety prevention services, so the comprehensive index was calculated. Conclusion: In order to apply the implemented model, a test environment consisting of a life safety prevention service app and platform was built, and the efficacy of the function was evaluated based on the user scenario. Through this, the life safety index presented in this study was confirmed to support the golden time for diagnosis, response and prevention of safety risks by comprehensively indication the user's current safety level.

Study on the Possibility of Estimating Surface Soil Moisture Using Sentinel-1 SAR Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 Sentinel-1 SAR 위성영상을 이용한 지표 토양수분량 산정 가능성에 관한 연구)

  • Younghyun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.229-241
    • /
    • 2024
  • With the advancement of big data processing technology using cloud platforms, access, processing, and analysis of large-volume data such as satellite imagery have recently been significantly improved. In this study, the Change Detection Method, a relatively simple technique for retrieving soil moisture, was applied to the backscattering coefficient values of pre-processed Sentinel-1 synthetic aperture radar (SAR) satellite imagery product based on Google Earth Engine (GEE), one of those platforms, to estimate the surface soil moisture for six observatories within the Yongdam Dam watershed in South Korea for the period of 2015 to 2023, as well as the watershed average. Subsequently, a correlation analysis was conducted between the estimated values and actual measurements, along with an examination of the applicability of GEE. The results revealed that the surface soil moisture estimated for small areas within the soil moisture observatories of the watershed exhibited low correlations ranging from 0.1 to 0.3 for both VH and VV polarizations, likely due to the inherent measurement accuracy of the SAR satellite imagery and variations in data characteristics. However, the surface soil moisture average, which was derived by extracting the average SAR backscattering coefficient values for the entire watershed area and applying moving averages to mitigate data uncertainties and variability, exhibited significantly improved results at the level of 0.5. The results obtained from estimating soil moisture using GEE demonstrate its utility despite limitations in directly conducting desired analyses due to preprocessed SAR data. However, the efficient processing of extensive satellite imagery data allows for the estimation and evaluation of soil moisture over broad ranges, such as long-term watershed averages. This highlights the effectiveness of GEE in handling vast satellite imagery datasets to assess soil moisture. Based on this, it is anticipated that GEE can be effectively utilized to assess long-term variations of soil moisture average in major dam watersheds, in conjunction with soil moisture observation data from various locations across the country in the future.