• Title/Summary/Keyword: 환경라벨링

Search Result 68, Processing Time 0.03 seconds

Implementation of Mouse Function Using Web Camera and Hand (웹 카메라와 손을 이용한 마우스 기능의 구현)

  • Kim, Seong-Hoon;Woo, Young-Woon;Lee, Kwang-Eui
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.5
    • /
    • pp.33-38
    • /
    • 2010
  • In this paper, we proposed an algorithm implementing mouse functions using hand motion and number of fingers which are extracted from an image sequence. The sequence is acquired through a web camera and processed with image processing algorithms. The sequence is first converted from RGB model to YCbCr model to efficiently extract skin area and the extracted area is further processed using labeling, opening, and closing operations to decide the center of a hand. Based on the center position, the number of fingers is decided, which serves as the information to decide and perform a mouse function. Experimental results show that 94.0% of pointer moves and 96.0% of finger extractions are successful, which opens the possibility of further development for a commercial product.

A Study on GPR Image Classification by Semi-supervised Learning with CNN (CNN 기반의 준지도학습을 활용한 GPR 이미지 분류)

  • Kim, Hye-Mee;Bae, Hye-Rim
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.197-206
    • /
    • 2021
  • GPR data is used for underground exploration. The data gathered are interpreted by experts based on experience as the underground facilities often reflect GPR. In addition, GPR data are different in the noise and characteristics of the data depending on the equipment, environment, etc. This often results in insufficient data with accurate labels. Generally, a large amount of training data have to be obtained to apply CNN models that exhibit high performance in image classification problems. However, due to the characteristics of GPR data, it makes difficult to obtain sufficient data. Finally, this makes neural networks unable to learn based on general supervised learning methods. This paper proposes an image classification method considering data characteristics to ensure that the accuracy of each label is similar. The proposed method is based on semi-supervised learning, and the image is classified using clustering techniques after extracting the feature values of the image from the neural network. This method can be utilized not only when the amount of the labeled data is insufficient, but also when labels that depend on the data are not highly reliable.

POC : Establishing Dataset for Artificial Intelligence-based Crack Detection (POC : 인공지능 기반 균열 탐지를 위한 데이터셋 구축)

  • Kim, Ji-Ho;Kim, Gyeong-Yeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.45-48
    • /
    • 2022
  • 건축물 안전 점검은 대부분 전문가의 현장 방문을 통한 육안검사다. 그중 균열 검사는 건물 위험도를 나타내는 중요한 지표로써 발생 위치, 진행성, 크기를 조사하는데, 최근 균열 조사 방식에 대해 객관성과 체계성을 보완할 딥러닝 개발이 활발하다. 그러나 균열 이미지는 외부 현장에 모양, 규모도 많은 종류라 도메인이 다양해야 하는데 대부분 제한된 환경과 실제적인 균열 검사와는 무관한 데이터로 구성되어 실효적이지 않다. 본 연구에서는 균열 조사에 적합하고 Wild 환경에 적용 가능한 POC 데이터셋을 소개한다. 기존 균열 공인 데이터셋 4종의 특징과 한계점을 분석을 토대로 고해상도 이미지로써 균열의 세부 특징을 담았고 균열 유사 환경과 조건들을 추가 촬영해 균열 검출에 강인하게 학습되도록 지향하였다. 정제 및 라벨링 작업을 거친 POC 데이터 셋은 균열 검출모델인 YOLO-v5으로 성능을 실험하였고, mAP(mean Average Precision) 75.5%로 높은 검출률을 보였다. POC 데이터셋으로 더욱 도메인에 적응적(Domain-adapted)인 인공지능 모델을 개발하여 건물, 댐, 교량 등 각종 대형 건축물에 대한 안전하고 효과적인 안전 관리 도구로써 활용할 것을 기대한다.

  • PDF

Product Design Information Retrieval System using Product Ad-hoc image (제품 영상을 이용한 제품 설계 정보 검색 시스템)

  • Lee Hyung-Jae;Kim Yong-Il;Yang Hyung-Jeong
    • Annual Conference of KIPS
    • /
    • 2006.05a
    • /
    • pp.307-310
    • /
    • 2006
  • 본 논문은 분산된 협동적 개발 환경에서 제품 설계 정보 재사용을 위한 제품 영상 기반의 제품 설계 정보 검색 시스템을 제안한다. 본 논문에서 제안한 시스템은 에지기반 라벨링(EBL) 방법으로 제품 영상을 분할하고 각 분할 영역의 속성과 영역간의 관계를 표현하는 속성 관계 그래프(ARG)을 생성하여 질의 영상과의 부합을 수행한다. 검색된 유사 영상과 연결된 제품 설계 정보를 접근함으로써 영상 검색을 통한 제품 설계 정보의 재사용이 가능하다. 본 시스템의 주요 이점은 다음과 같다. (1) 비율을 이용한 특징 벡터에 의해 다양한 크기의 유사 부품을 포함한 영상의 검색이 가능하다. (2) 분할된 각 부품의 영역, R,G,B 채널의 표준편차등의 다양한 속성(특징)과 그들의 관계를 적용하기 때문에 검색 능력이 뛰어나다. (3) 주변 장치로부터 쉽게 획득할 수 있는 래스터 영상을 이용하므로 활용성이 높다.

  • PDF

A Study on Segmental Duratio Control for the Kroean TTS (한국어 문음성 변환기의 음운지속시간 제어에 관한 연구)

  • 김인영
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.143-146
    • /
    • 1998
  • 자연스러운 한국어의 음성합성을 위해서는 음운의 지속시간의 제어가 매우 중요하다. 본 연구에서는 POW3848 어절에 대한 음성 데이터에 대해 음운 세그먼트, 음운 라벨링, 품사 태깅을 행한 음성 데이터베이스를 구축하여 한국어 음운의 지속시간을 변화시키는 시간 특징을 통계적으로 분석하였다. 이 시간 특징들 중 변화 폭이 큰 요인들을 제어요소로 각 음운의 고유길이를 최대한 배제하고 단지 음운 발성 환경의 영향에 의한 지속시간 변화만을 고려하는 정규화 지속시간에 대한 회귀트리로 한국어 음운 지속시간을 모델화 하였다. 제안된 음운 지속시간 모델을 실시간 제어 알고리즘으로 구현하여 평가한 결과, 음운 지속시간 예측오차의 88% 정도가 25ms이내 이었고 예측치와 관측치 간의 다중 상관관계수는 0.92 정도로 평가되어, 제안된 모델의 타당성이 입증되었다.

  • PDF

Moving Objects Identification Using FAST Corner Points and Earth Mover's Distnace (FAST 코너점과 Earth Mover's Distance를 이용한 다수의 이동물체 식별 알고리즘)

  • Lee, Jung Sik;Woo, Byong Jo;Joo, Young Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1359-1360
    • /
    • 2015
  • 본 논문에서는 FAST 코너점과 EMD를 이용한 다수의 이동물체 식별 알고리즘을 제안한다. 제안하는 방법은 먼저 영상 내의 이동물체를 추출하기 위한 기법으로 GMM을 기반으로 배경을 모델링 하며, 모델링 된 배경에서 추출된 이동물체를 인식하기 위해 라벨링 기법을 수행한다. 그 다음 인식된 다수의 이동물체 식별을 위해 FAST 코너점과 색상 기반의 EMD 알고리즘을 융합한 다수의 이동물체 식별 방법을 제안하며, 최종적으로, 실내 환경 내에서의 실험을 통해 제안한 방법의 응용 가능성을 증명한다.

  • PDF

Adaptive Region Segmentation using Static/Dynamic Pattern Matching (정적/동적 패턴을 이용한 적응적 영역 분할 방법)

  • Park, Kyoung-Hwan;Lee, Chi-Won;Lee, Chang-Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.145-148
    • /
    • 2010
  • 본 논문에서 우리는 도로 영역과 하늘 영역, 그리고 도로와 하늘이 아닌 나머지 영역으로 분할하기 위해 동적인(dynamic) 패턴을 이용한 적응적인(adaptive) 병합 방법을 제안한다. 원본영상에서 Mean Shift 알고리즘과 라벨링(Labeling)을 수행하고 영역을 과분할 한다. 컬러에 의해서 도로와 하늘영역이 검출되지 못하는 영역을 위해서 도로 영역과 하늘 영역에서 동적인 패턴 추출한 후 매칭을 통해 유사 영역을 병합한다. 이것은 도로와 하늘의 정보를 현재 환경에서 적응적으로 추출하는 방법이다. 실험에서 정적인(static) 패턴을 사용해서 병합하는 방법과 동적인 패턴을 사용해서 병합하는 방법을 비교하였다. 그 결과, 동적인 패턴을 사용하였을 때 8.12%의 향상된 성능을 보였다.

  • PDF

A Study on the Design and Implementation of AI-based Waste Recycling Automation System (AI 기반 쓰레기 분리수거 자동화 시스템 설계 및 구현에 관한 연구)

  • Kwon, Jun-Hyuk;Kim, Seung-Hyun
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.869-871
    • /
    • 2022
  • 현재 사회적 문제로 잘못된 자원 재활용 방법 및 경비 노동자 근로 환경 개선 필요성이 지속해서 대두되고 있으며, 최근 발생한 코로나바이러스로 인하여 배달 음식의 수요가 증가하여 각 가정에서 배출되는 쓰레기의 양이 매우 증가하였다. 이러한 사회적 문제를 효율적으로 대처하기 위하여 본 논문에서는 분리수거가 가능한 사물을 인식하여 AI 모듈로 객체 정보를 전송하고 전송된 정보에 따라 적절한 분리수거를 수행하는 스마트 분리수거 자동화 시스템을 개발하였다. 본 연구에서는 잘못된 객체 정보 전송을 최소화하고, 객체 인식률의 정확도를 높이기 위하여 많은 종류의 Custom dataset을 Yolo_Mark, Scaling Annoter Tool을 이용하여 직접 라벨링 하였으며 K-means Clustering 알고리즘을 적용하여 더욱 정확한 분리수거 자동화 시스템을 구현하였다. 본 연구를 바탕으로 불필요한 자원과 인력 낭비를 줄일 수 있으며, 인간이 아닌 시스템에 의해 통제되므로 더욱 정확한 분리수거가 가능하다.

A Study on Tools Vehicle Detection and Vehicle Tracking (차량 탐지와 차량 추적에 대한 연구)

  • Se-Young Kim;Jae-Eun Min;Se-Hun Pyo;Sang-Il Choi
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.592-594
    • /
    • 2023
  • 차량 탐지와 차량 추적 기술은 교통관리 시스템, 자율주행 자동차 시스템 및 이를 응용한 보안 감시 시스템, 군사 작전 및 안전 등 다양한 산업 분야에서 활용되고 있다. 본 논문에서는 차량 탐지는 YOLOv7 모델을, 차량 추적은 DeepSORT 알고리즘을 사용하여 도로의 차량들에 대해 탐지 및 추적을 순차적으로 진행하였다. 실험환경은 차량 탐지 데이터 셋(dataset)을 직접 라벨링(labeling) 하여 실험하였고, 차량 추적은 차량 탐지에서 학습해서 얻은 체크포인트(checkpoint) 모델을 가중치로 설정하여 실험을 진행하였다. 차량 탐지 실험결과는 validation 과 test 에서 높은 정확도를 확인할 수 있었고, 차량 추적은 Namsa 비디오 및 Seohaegyo 비디오에서도 차량 추적이 잘 되고 있음을 확인할 수 있었다.

Dataset Augmentation on Fallen Person Objects in a Autonomous Driving Tractor Environment (자율주행 트랙터 환경에서 쓰러진 사람에 대한 데이터 증강)

  • Hwapyeong Baek;Hanse Ahn;Heesung Chae;Yongwha Chung
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.553-556
    • /
    • 2023
  • 데이터 증강은 데이터 불균형 문제를 해결하기 위해 일반화 성능을 향상시킨다. 이는 과적합 문제를 해결하고 정확도를 높이는 데 도움을 준다. 과적합을 해결하기 위해서 본 논문에서는 분할 마스크 라벨링을 자동화하여 효율성을 높이고, RoI를 활용한 분할 Copy-Paste 데이터 증강 기법을 제안한다. 본 논문의 제안 방법을 적용한 결과 YOLOv8 모델에서 기존의 분할, 박스 Copy-Paste 데이터 증강 기법과 비교해서 쓰러진 사람 객체에 대한 정확도가 10.2% 증가함으로써 제안한 방법이 일반화 성능을 높이는 데 효과가 있음을 확인하였다.