• Title/Summary/Keyword: 확장칼만필터

Search Result 167, Processing Time 0.024 seconds

Performance Comparison of Various Extended Kalman Filter and Cost-Reference Particle Filter for Target Tracking with Unknown Noise (노이즈 불확실성하에서의 확장칼만필터의 변종들과 코스트 레퍼런스 파티클필터를 이용한 표적추적 성능비교)

  • Shin, Myoungin;Hong, Wooyoung
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.99-107
    • /
    • 2018
  • In this paper, we study target tracking in two dimensional space using a Extended Kalman filter(EKF), various Extended Kalman Filter and Cost-Reference Particle Filter(CRPF), which can effectively estimate the state values of nonlinear measurement equation. We introduce various Extended Kalman Filter which the Unscented Kalman Filter(UKF), the Central Difference Kalman Filter(CDKF), the Square Root Unscented Kalman Filter(SR-UKF), and the Central Difference Kalman Filter(SR-CDKF). In this study, we calculate Mean Square Error(MSE) of each filters using Monte-Carlo simulation with unknown noise statistics. Simulation results show that among the various of Extended Kalman filter, Square Root Central Difference Kalman Filter has the best results in terms of speed and performance. And, the Cost-Reference Particle Filter has an advantageous feature that it does not need to know the noise distribution differently from Extended Kalman Filter, and the simulation result shows that the excellent in term of processing speed and accuracy.

REAL-TIME TRAJECTORY ESTIMATION OF SPACE LAUNCH VEHICLE USING EXTENDED KALMAN FILTER AND UNSCENTED KALMAN FILTER (확장칼만필터와 UNSCENTED 칼만필터를 이용한 우주발사체의 실시간 궤적추정)

  • Baek, Jeong-Ho;Park, Sang-Young;Park, Eun-Seo;Choi, Kyu-Hong;Lim, Hyung-Chul;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.501-512
    • /
    • 2005
  • This research supposed when a fictitious KSIV-I space launch vehicle launches from NARO space center. This compared and analyzed the results from real-time trajectory estimation using the Extended Kalman Filter and the Unscented Kalman Filter. A virtual trajectory and observation data are generated for the fictitious KSLV-I and three measurement radars. The performances of both Otters are compared for several simulations with small initial errors, large initial errors, 20Hz and 10Hz data rate. The results show that the Unscented Kalman Filter yields faster convergence and more accurate than the Extended Kalman Filter for the cases with larger initial error and slower data rate conditions.

Efficient Battery SOC Estimation Algorithm Using Extended Kalman Filter (확장칼만필터를 적용한 효율적 배터리 SOC 추정 알고리즘)

  • Yon-Sik Lee;Jae-Seok Baik;Ok-Jae Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.449-452
    • /
    • 2024
  • 본 논문에서는 리튬이온 배터리의 SOC(State Of Charge) 초기 정보의 정확도 향상을 위하여 확장칼만필터(EKF) 방법을 적용한 효율적 SOC 추정 알고리즘을 제안한다. 일반적인 전류적산법을 사용하는 방법은 초기 조건이 부정확한 경우에 오차가 발생하고 시간에 따라 누적 오차가 커지는 단점이 있다. 이러한 문제점 해결을 위하여 초기 SOC 추정값에 EKF 방법을 동시에 적용하는 알고리즘을 제안한다. 제안 알고리즘의 평가를 위한 실험을 통하여 제안 방법이 기존 SOC 추정 방법보다 추정 오차가 개선됨을 확인하였다.

  • PDF

A Study on On-line modeling of Fuzzy System via Extended Kalman Filter (확장 칼만필터를 이용한 온라인 퍼지 모델링 알고리즘에 대한 연구)

  • 김은태
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.5
    • /
    • pp.250-258
    • /
    • 2003
  • In this paper, an explanation regarding on-line identification of a fuzzy system is presented. The fuzzy system to be identified is assumed to be in the type of singleton consequent parts and be represented by a linear combination of fuzzy basis functions. For on-line identification, squared-cosine membership function is introduced to reduce the number of parameters to be identified and make the system consistent and differentiable. Then the parameters of the fuzzy system are identified on-line by the gradient search method and Extended Kalman Filter. Finally, a computer simulation is peformed to illustrate the validity of the suggested algorithms.

Study on the Attitude Determination of KOREASAT3 using Extended Kalman Filter about Gyro Anomaly Case (자이로 이상상태가 있는 경우의 확장칼만필터를 이용한 무궁화위성 3호의 자세결정 연구)

  • Park, Young-Woong;Park, Bong-Kyu;Bang, Hyo-Choong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2258-2261
    • /
    • 2002
  • 본 논문에서는 정지궤도 통신위성인 무궁화위성 3호 버스시스템을 모델로 하여 확장칼만필터를 이용한 자세결정 알고리즘을 개발하였다. 그리고 자이로에 바이어스가 있는 경우 및 자이로가 고장이 난 경우에 대한 결과를 시뮬레이션을 통해 필터의 성능을 검증하였다. 특히, 추정된 상태변수를 이용한 2Hz 자세제어를 동시에 수행하였다.

  • PDF

Real-time Target Tracking System by Extended Kalman Filter (확장칼만필터를 이용한 실시간 표적추적)

  • 임양남;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.175-181
    • /
    • 1998
  • This paper describes realtime visual tracking system of moving object for three dimensional target using EKF(Extended Kalman Filter). We present a new realtime visual tracking using EKF algorithm and image prediction algorithm. We demonstrate the performance of these tracking algorithm through real experiment. The experimental results show the effectiveness of the EKF algorithm and image prediction algorithm for realtime tracking and estimated state value of filter, predicting the position of moving object to minimize an image processing area, and by reducing the effect by quantization noise of image.

  • PDF

현대제어이론을 이용한 유도전동기 제어

  • 이동춘;지준근
    • 전기의세계
    • /
    • v.43 no.2
    • /
    • pp.20-29
    • /
    • 1994
  • 본고에서는 다변수 상태궤환을 이용한 유도전동기의 전류제어, 확장칼만필터(Extened Kalman filter)를 이용한 유도전동기의 속도추정, 칼만필터와 최적제어를 이용한 2관성계 유도전동기 시스템의 축진동 억제를 위한 속도제어 등 현대제어이론을 산업용 유도전동기 제어에 적용한 예에 대해 기술한다.

  • PDF

Filtering Performance Analyizing for Relative Navigation Using Single Difference Carrier-Phase GPS (GPS 신호의 단일차분을 이용한 편대위성의 상대위치 결정을 위한 필터링 성능 분석)

  • Park, In-Kwan;Park, Sang-Young;Choi, Kyu-Hong;Choi, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.283-290
    • /
    • 2008
  • Satellite formation flying can provide the platform for interferometric observation to acquire the precise data and ensure the flexibility for space mission. This paper presents development and verification of an algorithm to estimate the baseline between formation flying satellites. To estimate a baseline(relative navigation) in real time, EKF(Extended Kalman Filter) and UKF(Unscented Kalman Filter) are used. Measurements for updating a state-vector in Kalman Filter are GPS single difference data. In results, The position errors in estimated baseline are converged to less than ${\pm}1m$ in both EKF and UKF. And as using the two types of Kalman filter, it is clear that the unscented Kalman filter shows a relatively better performance than the extended Kalman filter by comparing an efficiency to the model which has a non-linearity.