• 제목/요약/키워드: 확장된 축소 반응기구

검색결과 2건 처리시간 0.016초

CH4비예혼합화염의 수치계산에 적용하기 위한 확장된 축소반응기구의 비정상 응답특성 검토 (An Investigation of Unsteady Response of Augmented Reduced Mechanism for Numerical Simulation of CH4 Nonpremixed Flames)

  • 오창보;박정;이창언
    • 대한기계학회논문집B
    • /
    • 제27권2호
    • /
    • pp.243-250
    • /
    • 2003
  • The extinction behavior and the unsteady response of augmented reduced mechanism(ARM) have been investigated by adopting an OPPDIF code and a numerical solver for the flamelet equations. By comparing the performance of the ARM based on Miller and Bowman's mechanism(MB-ARM) with that of the ARM based on GRI-Mech 3.0(GRI-3.0-ARM), it is identified that the MB-ARM is more suitable for the unsteady calculation because it is relatively less stiff than GRI-3.0-ARM during an ignition process. The steady results using the MB-ARM, which is modified to predict reasonably the extinction point of experiment, are in excellent agreement with those from full mechanism. Under the sinusoidal transient disturbances of scalar dissipation rate, the unsteady responses of the flame temperature and species concentrations using a modified MB-ARM show in very close agreement with those from full mechanism. It is presumed that above modified MB-ARM is very suitable for the unsteady simulation of turbulent flames because it gives not only a low computational cost but also a good prediction performance for flame structure, extinction point and unsteady response.

와동과 상호작용하는 대향류 비예혼합화염의 소염특성 (Extinction in a Counterflow Nonpremixed Flame Interacting with a Vortex)

  • 오창보;이창언
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1401-1411
    • /
    • 2003
  • A two-dimensional direct numerical simulation was performed to investigate the flame structure of CH$_4$$N_2$-air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed chemistry were adopted in this simulation. The characteristic vortex and chemical time scales were introduced to quantify and investigate the extinction phenomenon during a flame-vortex interaction. The results showed that fuel- and air-side vortex cause an unsteady extinction. In this case, the flame interacting with a vortex was extinguished at much larger scalar dissipation rate than steady flame. It was also found that the air-side vortex extinguished a flame more rapidly than the fuel-side vortex. Furthermore, it was noted that the degree of unsteady effect experienced by a flame can be investigated by comparing the above two characteristic time scales, and this analysis could give an appropriate reason for the results of the previously reported experiment.