• Title/Summary/Keyword: 확산성수소량

Search Result 13, Processing Time 0.02 seconds

Effects of Diffusible Hydrogen Content and Hardness on Cold Cracking in High Strength Weld Metal (고강도강 용접금속 저온균열 발생에 미치는 확산성수소량 및 경도의 영향)

  • Seo, Won-Chan;Bang, Kook-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.33-38
    • /
    • 2012
  • The effects of the diffusible hydrogen content and hardness on the cold cracking in high strength weld metal were investigated. The diffusible hydrogen contents were influenced by welding parameters such as the voltage and contact tip-to-work distance (CTWD). The diffusible hydrogen content increased with an increase in voltage. However, it was decreased with an increase in CTWD. CTWD also influenced the weld metal hardness,especially when the wire used had a higher strength than the base metal. This showed that weld metal hardness had a more powerful effect on weld metal cold cracking than the diffusible hydrogen content in this experiment.

Effects of Welding Parameters on Diffusible Hydrogen Contents in FCAW-S Weld Metal (셀프실드아크 용접금속의 확산성수소량에 미치는 용접변수의 영향)

  • Bang, Kook-Soo;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.77-81
    • /
    • 2013
  • The effects of the welding parameters, contact tip-to-workpiece distance (CTWD), current, and voltage on the diffusible hydrogen content in weld metal deposited by self-shielded flux cored arc welding were investigated and rationalized by comparing the amount of heat generated in the extension length of the wire. This showed that as CTWD increased from 15mm to 25mm, the amount of heat generated was increased from 71.1J to 174.8J, and the hydrogen content was decreased from 11.3mL/100g to 5.9mL/100 g. Even if little difference was observed in the amount of heat generated, the hydrogen content was increased with an increase in voltage because of the longer arc length. A regression analysis showed that the regression coefficient of voltage in self-shielded flux cored arc welding is greater than that in $CO_2$ arc welding. This implies that voltage control is more important in self-shielded flux cored arc welding than in $CO_2$ arc welding.