• Title/Summary/Keyword: 확률 기반

Search Result 2,647, Processing Time 0.028 seconds

A Statistical Model-Based Voice Activity Detection Employing the Conditional MAP Criterion with Spectral Deviation (조건 사후 최대 확률과 음성 스펙트럼 변이 조건을 이용한 통계적 모델 기반의 음성 검출기)

  • Kim, Sang-Kyun;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.324-329
    • /
    • 2011
  • In this paper, we propose a novel approach to improve the performance of a statistical model-based voice activity detection (VAD) which is based on the conditional maximum a posteriori (CMAP) with deviation. In our approach, the VAD decision rule is expressed as the geometric mean of likelihood ratios (LRs) based on adapted threshold according to the speech presence probability conditioned on both the speech activity decisions and spectral deviation in the pervious frame. Experimental results show that the proposed approach yields better results compared to the CMAP-based VAD using the LR test.

Machine Learning-based Multiple Fault Localization with Bayesian Probability (베이지안 확률을 적용한 기계학습 기반 다중 결함 위치 식별 기법)

  • Song, Jihyoun;Kim, Jeongho;Lee, Eunseok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.151-154
    • /
    • 2017
  • 소프트웨어의 개발과정 중 결함을 제거하는 작업인 디버깅을 위해서는 가장 먼저 그 결함의 정확한 위치를 찾아야한다. 이 작업은 많은 시간이 소요되며, 이 시간을 단축시키기 위한 결함 위치 식별 기법들이 소개되었다. 많은 기법들 중 프로그램 커버리지 정보를 학습하여 규칙을 분석하는 인공신경망 기반 선행 연구가 있다. 이를 기반으로 본 논문에서는 문장들 간의 관계를 추가적으로 파악하여 학습 데이터로 사용하는 기법을 제안한다. 특정 문장이 항상 지나는 테스트케이스들 중 나머지 다른 문장들이 지나는 테스트케이스의 비율을 통해 문장들 간의 관계를 나타낸다. 해당 비율을 계산하기 위해 조건부 확률인 베이지안 확률을 사용한다. 베이지안 확률을 통해 얻은 문장들의 관계에 따라 인공신경망 내에서 의심도를 결정하는 웨이트(weight)가 기존 기법과는 다르게 학습된다. 이 차이는 문장들의 의심도를 조정하며, 결과적으로 다중 결함 위치 식별의 정확도를 향상시킨다. 본 논문에서 제안한 기법을 이용하여 실험한 결과, Tarantula 대비 평균 39.8%, 기존 역전파 인공신경망(BPNN) 기반 기법 대비 평균 60.5%의 정확도 향상이 있었음을 확인할 수 있다.

  • PDF

Probabilistic Segmentation and Tagging of Unknown Words (확률 기반 미등록 단어 분리 및 태깅)

  • Kim, Bogyum;Lee, Jae Sung
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.430-436
    • /
    • 2016
  • Processing of unknown words such as proper nouns and newly coined words is important for a morphological analyzer to process documents in various domains. In this study, a segmentation and tagging method for unknown Korean words is proposed for the 3-step probabilistic morphological analysis. For guessing unknown word, it uses rich suffixes that are attached to open class words, such as general nouns and proper nouns. We propose a method to learn the suffix patterns from a morpheme tagged corpus, and calculate their probabilities for unknown open word segmentation and tagging in the probabilistic morphological analysis model. Results of the experiment showed that the performance of unknown word processing is greatly improved in the documents containing many unregistered words.

Probabilistic Approach to Estimation of Drought Possibility for Vegetation Based on Satellite Observation (위성관측 기반의 식생의 가뭄 가능성 추정을 위한 확률론적 접근방법)

  • Won, Jeongeun;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.115-115
    • /
    • 2021
  • 식생은 증발산, 강우, 토양 수분 등 다양한 수문기상 요인과 밀접한 관계가 있기 때문에 식생의 상태는 가뭄 발생 시 물 부족에 매우 큰 영향을 받는다. 가뭄에 따른 식생의 변화와 영향을 파악하기 위해서는 식생-기후의 피드백을 이해해야 한다. 식생과 기후변수의 상호관계를 묘사하고 결합 확률을 구성하는 것은 식생-기후의 피드백을 이해하는데 적절하다. Copula 함수는 모든 변수를 연결하는 이점을 가지기 때문에 다양한 확률 변수를 결합하는 강력한 접근방법으로, copula를 통한 확률론적 접근방법은 수문 기상 스트레스에 대한 식생의 반응을 효과적으로 조사할 수 있다. 이에 따라 본 연구에서는 copula 기반의 식생-기후의 상호관계를 통해 가뭄 발생 시 식생이 받을 수 있는 영향을 정량화하고자 한다. 이를 위해 위성 자료를 활용한 식생건강성지수(Vegetation Health Index, VHI)와 위성관측된 강수 및 잠재증발산 자료를 적용하여 높은 공간 해상도에서 한국 전역의 식생 가뭄 가능성을 추정하고자 하였다. 강수 및 잠재증발산 자료를 통해 다양한 가뭄지수를 산정하고, copula 결합 이론을 기반으로 VHI와 가뭄지수 간의 이변량 결합 확률모델이 제안된다. 이에 조건부 확률을 적용하여 다양한 가뭄 시나리오에서 식생의 가뭄 가능성을 추정하고, 가뭄에 취약한 지역을 공간적으로 분석하고자 한다. 이를 통해 가뭄 스트레스에 따른 식생 변화와 생태학적 가뭄의 공간적 특성을 효과적으로 파악할 수 있을 것으로 기대된다.

  • PDF

POS-Tagging Model Combining Rules and Word Probability (규칙과 어절 확률을 이용한 혼합 품사 태깅 모델)

  • Hwang, Myeong-Jin;Kang, Mi-Young;Kwon, Hyuk-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.11-15
    • /
    • 2006
  • 본 논문은, 긍정적 가중치와 부정적 가중치를 통해 표현되는 규칙에 기반을 둔 품사 태깅 모델과, 형태 소 unigram 정보와 어절 내의 카테고리 패턴에 기반하여 어절 확률을 추정하는 품사 태깅 모델의 장점을 취하고 단점을 보완할 수 있는 혼합 품사 태깅 모델을 제안한다. 이 혼합 모델은 먼저, 규칙에 기반한 품사 태깅을 적용한 후, 규칙이 해결하지 못한 결과에 대해서 통계적인 기법을 사용하여 품사 태깅을 한다. 본 연구는 어절 내 카테고리 패턴정보에 따른 파라미터 set과 형태소 unigram만을 이용해 어절 확률을 계산해 내므로 다른 통계기반 접근방법에서와는 달리 작은 크기의 통계사전만을 필요로 하며, 카테고리 패턴 정보를 사용함으로써 통계기반 접근 방법의 가장 큰 문제점인 data sparseness 문제 또한 줄일 수 있다는 이점이 있다. 특히, 본 논문에서 사용할 통계 모델은 어절 확률에 기반을 두고 있기 때문에 한국어의 특성을 잘 반영할 수 있다. 본 논문에서 제안한 혼합 모델은 규칙이 적용된 후에도 후보열이 둘 이상 남아 오류로 반환되었던 어절 중 24%를 개선한다.

  • PDF

Statistical Model-Based Voice Activity Detection Using the Second-Order Conditional Maximum a Posteriori Criterion with Adapted Threshold (적응형 문턱값을 가지는 2차 조건 사후 최대 확률을 이용한 통계적 모델 기반의 음성 검출기)

  • Kim, Sang-Kyun;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.76-81
    • /
    • 2010
  • In this paper, we propose a novel approach to improve the performance of a statistical model-based voice activity detection (VAD) which is based on the second-order conditional maximum a posteriori (CMAP). In our approach, the VAD decision rule is expressed as the geometric mean of likelihood ratios (LRs) based on adapted threshold according to the speech presence probability conditioned on both the current observation and the speech activity decisions in the pervious two frames. Experimental results show that the proposed approach yields better results compared to the statistical model-based and the CMAP-based VAD using the LR test.

Language Modeling based on Inter-Word Dependency Relation (단어간 의존관계에 기반한 언어모델링)

  • Lee, Seung-Mi;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.239-246
    • /
    • 1998
  • 확률적 언어모델링은 일련의 단어열에 문장확률값을 적용하는 기법으로서 음성인식, 확률적 기계번역 등의 많은 자연언어처리 응용시스템의 중요한 한 요소이다. 기존의 접근방식으로는 크게 n-gram 기반, 문법 기반의 두가지가 있다. 일반적으로 n-gram 방식은 원거리 의존관계를 잘 표현 할 수 없으며 문법 기반 방식은 광범위한 커버리지의 문법을 습득하는데에 어려움을 가지고 있다. 본 논문에서는 일종의 단순한 의존문법을 기반으로 하는 언어모델링 기법을 제시한다. 의존문법은 단어와 단어 사이의 지배-피지배 관계로 구성되며 본 논문에서 소개되는 의존문법 재추정 알고리즘을 이용하여 원시 코퍼스로부터 자동적으로 학습된다. 실험 결과, 제시된 의존관계기반 모델이 tri-gram, bi-gram 모델보다 실험코퍼스에 대해서 약 11%에서 11.5%의 엔트로피 감소를 보임으로써 성능의 개선이 있었다.

  • PDF

Korean and English Text Chunking Using IG Back-off Smoothing and Probabilistic Model (IG back-off 평탄화와 확률 기반 모델을 이용한 한국어 및 영어 단위화)

  • Yi, Eun-Ji;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.118-123
    • /
    • 2002
  • 많은 자연언어처리 분야에서 문장의 단위화는 기본적인 처리 단계로서 중요한 위치를 차지하고 있다. 한국어 단위화에 대한 기존 연구들은 규칙 기반 방법이나 기계 학습 기법을 이용한 것이 대부분이었다. 본 논문에서는 통계 기반 방식의 일환으로 순수 확률기반 모델을 이용한 단위화 방법을 제시한다. 확률 기반 모델은 처리하고자 하는 해당 언어에 대한 깊은 지식 없이도 적용 가능하다는 장점을 가지므로 다양한 언어의 단위화에 대한 기본 모델로서 이용될 수 있다. 또한 자료 부족 문제를 해결하기 위해 메모리 기반 학습 시에 사용하는 IG back-off 평탄화 방식을 시스템에 적용하였다. 본 논문의 모텔을 적용한 단위화 시스템을 이용하여 한국어와 영어에 대해 실험한 결과 비교적 작은 규모의 말뭉치를 학습하였음에도 불구하고 각각 90.0%, 90.0%의 정확도를 보였다.

  • PDF

Distributed Grid-based Cloaking Area Creation Scheme supporting Continuous Location-Based Services (연속적인 위치기반 서비스를 지원하는 분산 그리드 기반 Cloaking 영역 설정 기법 설계)

  • Lee, Ah-reum;Kim, Hyeong-il;Chang, Jae-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.697-698
    • /
    • 2009
  • 모바일 기기 및 무선 통신 기술의 발달로 인하여 위치 기반 서비스의 이용이 확산되었다. 그러나 이와 같이 사용자의 정확한 위치정보를 가지고 LBS 서버에 서비스를 요청하는 것은 심각한 개인 정보 누출의 위협이 될 수 있다. 따라서 안전하고 편리한 위치기반 서비스 사용을 위한 개인 정보 보호 방법이 요구된다. 이를 위해 본 논문에서는 연속적인 위치기반 서비스를 지원하는 분산 그리드 기반 Cloaking 영역 설정 기법을 설계한다. 설계하는 기법은 분산 환경에서 연속적인 서비스를 지원하기 위해 Cloaking 영역 설정 시 필요한 정보를 분산 유지하고, 이동 확률 매트릭스 생성 및 확률 계산을 분산적으로 수행한다. 마지막으로는 모바일 사용자 사이에 발생하는 통신비용을 감소시키기 위해, 대표 노드는 해당 클러스터에서 떠난 사용자에 대한 정보를 유지하고 클러스터 내 부분 확률값의 합산시 병합노드를 사용한다.

A Study on the Modeling of PoF Estimation for Probabilistic Risk Assessment based on Bayesian Method (확률론적 위험도평가를 위한 베이지안 기반의 파손확률 추정 모델링 연구)

  • Kim, Keun Won;Shin, Dae Han;Choi, Joo-Ho;Shin, KiSu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.619-624
    • /
    • 2013
  • To predict the probabilistic service life, statistical factors should be included to consider the uncertainty of parameters. Generally the probabilistic analysis is one of the common methods to account the uncertainty of parameters on the structural failure. In order to apply probabilistic analysis on the deterministic life analysis, it would be necessary to introduce Probability of Failure(PoF) and conduct risk assessment. In this work, we have studied probabilistic risk assessment of aircraft structures by using PoF approach. To achieve this goal, the Bayesian method was utilized to model PoF estimation since this method is known as the proper method to express the uncertainty of parameters. A series of proof tests were also conducted in order to verify the result of PoF estimation. The results from this efforts showed that the PoF estimation model can calculate quantitatively the value of PoF. Furthermore effectiveness of risk assessment approach for the aircraft structures was also demonstrated.