• Title/Summary/Keyword: 확률적 속도 장애물

Search Result 3, Processing Time 0.018 seconds

Automatic Ship Collision Avoidance Algorithm based on Probabilistic Velocity Obstacle with Consideration of COLREGs (국제해상충돌예방규칙을 고려한 확률적 속도 장애물 기반의 선박 충돌회피 알고리즘)

  • Cho, Yonghoon;Han, Jungwook;Kim, Jinwhan;Lee, Philyeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.75-81
    • /
    • 2019
  • This study presents an automatic collision avoidance algorithm for autonomous navigation of unmanned surface vessels. The performance of the collision avoidance algorithm is heavily dependent on the estimation quality of the course and speed of traffic ships because collision avoidance maneuvers should be determined based on the predicted motions of the traffic ships and their trajectory uncertainties. In this study, the collision avoidance algorithm is implemented based on the Probabilistic Velocity Obstacle (PVO) approach considering the maritime collision regulations (COLREGs). In order to demonstrate the performance of the proposed algorithm, an extensive set of simulations was conducted and the results are discussed.

Interactions Between a Propagating Flame and Rectangular Wall Obstacles in a Rectangular Confinement (직사각형 폭발 챔버에서 화염전파와 직사각형 장애물의 상관관계)

  • Park, Dal-Jae;Lee, Tae-Sung;Lee, Young-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.81-86
    • /
    • 2008
  • Experimental studies have been performed to examine the influences of wall obstructions in a rectangular confinement. Three wall obstacles with blockage ratios ranging from 10 to 30% were used. Temporally resolved flame front images were recorded by a high-speed video camera to investigate the interaction between a propagating flame and the obstacle. The local flame displacement speed and its probability density functions(PDFs) were obtained for the wall obstructions. During the interaction with the sharp-edges of the wall obstacles, the local propagation speed increased. The increase of local speed became larger as the obstruction ratio increased. However, the averaged flame displacement speeds with different blockage ratios were not significantly different within the chamber as shown in the paper of Park et al. The flame front interaction investigated in this work was less dependent of the obstacle obstructions compared to that published in the literature for large L/D.

Location Error Reduction method using Iterative Calculation in UWB system (Iterative Calculation을 이용한 UWB 위치측정에서의 오차감소 기법)

  • Jang, Sung-Jeen;Hwang, Jae-Ho;Choi, Nack-Hyun;Kim, Jae-Moung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.105-113
    • /
    • 2008
  • In Ubiquitous Society, accurate Location Calculation of user's device is required to achieve the need of users. As the location calculation is processed by ranging between transceivers, if some obstacles exist between transceivers, NLoS(Non-line-of-Sight) components of received signal increase along with the reduction of LoS(Line-of-Sight) components. Therefore the location calculation error will increase due to the NLoS effect. The conventional location calculation algorithm has the original ranging error because there is no transformation of ranging information which degrades the ranging accuracy. The Iterative Calculation method which minimizes the location calculation error relys on accurately identifying NLoS or LoS condition of the tested channel. We employ Kurtosis, Mean Excess Delay and RMS Delay spread of the received signal to identify whether the tested channel is LoS or NLoS firstly. Thereafter, to minimize location calculation error, the proposed Iterative Calculation method iteratively select random range and finds the averaged target location which has high probability. The simulation results confirm the enhancement of the proposed method.