• Title/Summary/Keyword: 확률적 불확실성

Search Result 564, Processing Time 0.024 seconds

A Study on Methodology for Improving Demand Forecasting Models in the Designated Driver Service Market (대리운전 시장의 지역별 수요 예측 모형의 성능 향상을 위한 방법론 연구)

  • Min-Seop Kim;Ki-Kun Park;Jae-Hyeon Heo;Jae-Eun Kwon;Hye-Rim Bae
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • Nowadays, the Designated Driver Services employ dynamic pricing, which adapts in real-time based on nearby driver availability, service user volume, and current weather conditions during the user's request. The uncertain volatility is the main cause of price increases, leading to customer attrition and service refusal from driver. To make a good Designated Driver Services, development of a demand forecasting model is required. In this study, we propose developing a demand forecasting model using data from the Designated Driver Service by considering normal and peak periods, such as rush hour and rush day, as prior knowledge to enhance the model performance. We propose a new methodology called Time-Series with Conditional Probability(TSCP), which combines conditional probability and time-series models to enhance performance. Extensive experiments have been conducted with real Designated Driver Service data, and the result demonstrated that our method outperforms the existing time-series models such as SARIMA, Prophet. Therefore, our study can be considered for decision-making to facilitate proactive response in Designated Driver Services.

Water Balance Projection Using Climate Change Scenarios in the Korean Peninsula (기후변화 시나리오를 활용한 미래 한반도 물수급 전망)

  • Kim, Cho-Rong;Kim, Young-Oh;Seo, Seung Beom;Choi, Su-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.807-819
    • /
    • 2013
  • This study proposes a new methodology for future water balance projection considering climate change by assigning a weight to each scenario instead of inputting future streamflows based on GCMs into a water balance model directly. K-nearest neighbor algorithm was employed to assign weights and streamflows in non-flood period (October to the following June) was selected as the criterion for assigning weights. GCM-driven precipitation was input to TANK model to simulate future streamflow scenarios and Quantile Mapping was applied to correct bias between GCM hindcast and historical data. Based on these bias-corrected streamflows, different weights were assigned to each streamflow scenarios to calculate water shortage for the projection periods; 2020s (2010~2039), 2050s (2040~2069), and 2080s (2070~2099). As a result by applying the proposed methodology to project water shortage over the Korean Peninsula, average water shortage for 2020s is projected to increase to 10~32% comparing to the basis (1967~2003). In addition, according to getting decreased in streamflows in non-flood period gradually by 2080s, average water shortage for 2080s is projected to increase up to 97% (516.5 million $m^3/yr$) as maximum comparing to the basis. While the existing research on climate change gives radical increase in future water shortage, the results projected by the weighting method shows conservative change. This study has significance in the applicability of water balance projection regarding climate change, keeping the existing framework of national water resources planning and this lessens the confusion for decision-makers in water sectors.

Characteristics of the Graded Wildlife Dose Assessment Code K-BIOTA and Its Application (단계적 야생동식물 선량평가 코드 K-BIOTA의 특성 및 적용)

  • Keum, Dong-Kwon;Jun, In;Lim, Kwang-Muk;Kim, Byeong-Ho;Choi, Yong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.252-260
    • /
    • 2015
  • This paper describes the technical background for the Korean wildlife radiation dose assessment code, K-BIOTA, and the summary of its application. The K-BIOTA applies the graded approaches of 3 levels including the screening assessment (Level 1 & 2), and the detailed assessment based on the site specific data (Level 3). The screening level assessment is a preliminary step to determine whether the detailed assessment is needed, and calculates the dose rate for the grouped organisms, rather than an individual biota. In the Level 1 assessment, the risk quotient (RQ) is calculated by comparing the actual media concentration with the environmental media concentration limit (EMCL) derived from a bench-mark screening reference dose rate. If RQ for the Level 1 assessment is less than 1, it can be determined that the ecosystem would maintain its integrity, and the assessment is terminated. If the RQ is greater than 1, the Level 2 assessment, which calculates RQ using the average value of the concentration ratio (CR) and equilibrium distribution coefficient (Kd) for the grouped organisms, is carried out for the more realistic assessment. Thus, the Level 2 assessment is less conservative than the Level 1 assessment. If RQ for the Level 2 assessment is less than 1, it can be determined that the ecosystem would maintain its integrity, and the assessment is terminated. If the RQ is greater than 1, the Level 3 assessment is performed for the detailed assessment. In the Level 3 assessment, the radiation dose for the representative organism of a site is calculated by using the site specific data of occupancy factor, CR and Kd. In addition, the K-BIOTA allows the uncertainty analysis of the dose rate on CR, Kd and environmental medium concentration among input parameters optionally in the Level 3 assessment. The four probability density functions of normal, lognormal, uniform and exponential distribution can be applied.The applicability of the code was tested through the participation of IAEA EMRAS II (Environmental Modeling for Radiation Safety) for the comparison study of environmental models comparison, and as the result, it was proved that the K-BIOTA would be very useful to assess the radiation risk of the wildlife living in the various contaminated environment.

Dietary risk assessment for suspected endocrine disrupting pesticides in agricultural products in Busan, Korea (부산지역 유통 농산물의 내분비계 장애추정농약 위해평가)

  • Kwon, Hyeon-Jeong;Ok, Yeon-Ju;Kim, Chan-Hee;Park, Mi-Jung;Hwang, Hye-Sun;Youn, Jong-Bae;Cha, Kyung-Suk;Jo, Hyun-Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.28-36
    • /
    • 2018
  • Studies on suspected endocrine disrupting pesticide (EDP) residues in agricultural products were carried out in 2016 in Busan, Korea. Twelve different EDPs, ranging in concentration between 0.003-2.049 mg/kg, were detected in 19.5% of 462 samples. About 0.2% of agricultural product samples exceeded the maximum residue limits (MRLs). Risk indices of all of the EDPs were less than 10% of the acceptable daily intake (ADI). The outcomes indicated that the risk groups at highest risk of exposure to diazinon (found in Korean cabbages) and carbendazim (found in apples) were females aged 40 to 49 and young males less than 10 years old, respectively. Based on the stochastic assessment at $95^{th}$ percentile (P95), risk index in these risk groups accounted for 8.38 and 2.98% of ADIs. The results showed that the occurrence of EDP residues in agricultural products could not be considered a public health problem.