• Title/Summary/Keyword: 확률신경망

Search Result 261, Processing Time 0.021 seconds

A Propose on Seismic Performance Evaluation Model of Slope using Artificial Neural Network Technique (인공신경망 기법을 이용한 사면의 내진성능평가 모델 제안)

  • Kwag, Shinyoung;Hahm, Daegi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.93-101
    • /
    • 2019
  • The objective of this study is to develop a model which can predict the seismic performance of the slope relatively accurately and efficiently by using artificial neural network(ANN) technique. The quantification of such the seismic performance of the slope is not easy task due to the randomness and the uncertainty of the earthquake input and slope model. Under these circumstances, probabilistic seismic fragility analyses of slope have been carried out by several researchers, and a closed-form equation for slope seismic performance was proposed through a multiple linear regression analysis. However, a traditional statistical linear regression analysis has shown a limit that cannot accurately represent the nonlinearistic relationship between the slope of various conditions and seismic performance. In order to overcome these problems, in this study, we attempted to apply the ANN to generate prediction models of the seismic performance of the slope. The validity of the derived model was verified by comparing this with the conventional multi-linear and multi-nonlinear regression models. As a result, the models obtained through the ANN basically showed excellent performance in predicting the seismic performance of the slope, compared to the models obtained by the statistical regression analyses of the previous study.

A Study on a Diagnosis System for HSR Turnout Systems (II) (고속철도 분기기 시스템 진단 시스템에 관한 연구(II))

  • Kim, Youngseok;Yoon, Yeonjoo;Back, Inchul;Ryu, Youngtae;Han, Hyunsu;Hwang, Ankyu;Kang, Hyungseok;Lee, Jongwoo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.223-233
    • /
    • 2017
  • The railway turnout system is one of the most important systems that set train routes. Turnout system integrity should be guaranteed for robust train operation. To diagnose the turnout system status, LVDT and accelerometers are installed on a turnout system in a high speed line. The LVDT and accelerometers produce signals containing physical meaning of the turnout systems. The LVDT produces the displacement of the rail gauge and vibration when point moving or a train passes on turnout systems and the accelerometer produces impact forces induced by wheel sets. We performed data extraction from the measured signals and parameterized the extracted signals into meaningful quantities. The parameters are used for classifying whether the turnout status is normal. We proposed two methods for the classification, one uses probabilistic distribution and the other artificial neuron networks. The probabilistic distribution is used for the parameter being classified by the quantities and the artificial neuron networks for the form classification. Finally, we show how to learn the normal status of a turnout system.

A Study on Optimization of Partial Discharge Pattern Recognition using Genetic Algorithm (Genetic Algorithm을 이용한 부분방전 패턴인식 최적화 연구)

  • Kim, Seong-Il;Jung, Seung-Yong;Koo, Ja-Yoon;Jang, Yong-Mu
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.145-146
    • /
    • 2006
  • 본 논문은 부분방전(PD: Partial Discharge)의 패턴인식 확률 극대화를 목적으로 신경망(NN: Neural Network) 파라미터 중에서 은닉층 뉴런의 수, 모멘텀(momentum)의 Step size와 Decay rate 를 최적화하기 위하여 유전 알고리즘(GA: Genetic Algonthm)을 적응하였다. 실험적 연구의 대상으로서, GIS(Gas Insulated Switchgear)사고의 주요 원인으로 보고되어있는 결함들을 인위적으로 모의한 16개 Test cell을 이용하여 부분방전을 발생시켰다. 부분방전 신호는 본 연구팀이 개발한 센서를 이용하여 검출되어 데이터베이스가 구축되어 그로부터 추출된 학습 데이터들의 학습에 다음과 같은 5가지 신경망 모델이 적응되었다: Multilayer Perception (MLP), Jordan-Elman Network (JEN), Recurrent Network (RN), Self-Organizing Feature Map (SOFM), Time-Lag Recurrent Network (TLRN). 유전 알고리즘 적용 효율성을 분석하기 위하여 동일한 데이터를 이용하여 다음과 같은 두 가지 방법을 적용한 결과를 상호 비교하였다. 우선 상기 선택된 모델만 적용하였고 다근 하나는 상기 모델과 Genetic Algorithm이 동시에 적용되었다. 모든 모델에 대하여 학습오차와 패턴 분류 확률을 비교한 결과, 유전 알고리즘 적응 시 부분방전 패턴인식 확률이 향상되었음이 확인되어 향후 신뢰성 있는 GIS 부분방전 진단기술에 활용될 수 있을 것으로 사료된다.

  • PDF

Spatial-Temporal Frough Analysis of South Korea Based On Neural Networks (신경망을 이용한 우리나라의 시공 간적 가뭄의 해석)

  • 신현석
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1998.05b
    • /
    • pp.7-13
    • /
    • 1998
  • A methodology to analyze and quantify regional meteorological drough based on annual precipitation data has been introduced in this paper In this study, based on posterior probability estimator and Bayesian classifier in Spatial Analysis Neural Network ISANN), point drought probabilities categorized as extreme, severe, mild, and non drought events has been defined, and a Bayesian Drought Severity Index (BPSI) has been introduced to classify the region of interest into four drought serverities. For example, the proposed methodology has been applied to analyze the regional drought of South Korea. This is a new method to classify and quantify the spatial or regional drought based on neural network pattern recognition technique and the results show that it may be apprepriate and valuable to analyze the spatial drought.

  • PDF

Computation of Noncentral F Probabilities using multilayer neural network (다층 신경 망을 이용한 비중심F분포 확률계산)

  • Gu, Sun-Hee
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.271-276
    • /
    • 2002
  • The test statistic in ANOVA tests has a single or doubly noncentral F distribution and the noncentral F distribution is applied to the calculation of the power functions of tests of general linear hypotheses. Although various approximations of noncentral F distribution are suggested, they are troublesome to compute. In this paper, the calculation of noncentral F distribution is applied to the neural network theory, to solve the computation problem. The neural network consists of the multi-layer perceptron structure and learning process has the algorithm of the backpropagation. Using fables and figs, comparisons are made between the results obtained by neural network theory and the Patnaik's values. Regarding of accuracy and calculation, the results by neural network are efficient than the Patnaik's values.

Symptoms - Diagnostic System using Artificial Neural Networks in a Web Environment (웹 환경에서 인공신경망을 이용한 증상 진단 시스템)

  • Kim, Sam-Geun;Kim, Byeong-Cheon
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.407-414
    • /
    • 2002
  • Being recently increased interests of our healthcare, a host of symptoms-diagnostic sites has been introduced on the World Wide Web. But conventional healthcare sites provide users with only a very restricted functions. In this paper, we propose the use of Artificial Neural Networks (ANNs) as a flexible symptoms-diagnostic tool that enables learning effects of ANNs (not expert's knowledge) to be incorporated into the diagnostic process. We develop a novel algorithm for predicting patient\`s disease that satisfy user (or expert)-specified symptoms on WWW. Our algorithm provides two important benefits : 1) enables users (patients) to be taken early diagnostic, and 2) enables experts to perform confidently diagnostic by referencing the predicted diseases-list with its respective possibility.

A Study on Adaptation of Neural Network to Warren Truss Design (와렌 트러스 설계에의 신경망 적용에 관한 연구)

  • Shin, Dong Cheol;Lee, Seung Chang;Cho, Young Sang
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.413-422
    • /
    • 2003
  • Most engineers tend to rely on their intuition or existing data in formulating structural design or preliminary estimate of various conditions. Because of these variations, the artificial neural network is used as an alternative design model of the warren truss since it can handle uncertainty through the probability method. This research validated the approximate structural design model of the warren truss, with its proper parameter values of the neural network and design process falling within 10 percent torrence of the different designs that resulted between this model and the MIDAS program. The suggested model for the process was adapted for the truss design using the member section table, while time saving and efficiency are based on the allowed range of torrence.

Landslide Hazard Mapping and Verification Using Probability Rainfall and Artificial Neural Networks (미래 확률강우량 및 인공신경망을 이용한 산사태 위험도 분석 기법 개발 및 검증)

  • Lee, Moung-Jin;Lee, Sa-Ro;Jeon, Seong-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.2
    • /
    • pp.57-70
    • /
    • 2012
  • The aim of this study is to analyse the landslide susceptibility and the future hazard in Inje, Korea using probability rainfalls and artificial neural network (ANN) environment based on geographic information system (GIS). Data for rainfall probability, topography, and geology were collected, processed, and compiled in a spatial database using GIS. Deokjeok-ri that had experienced 694 landslides by Typhoon Ewinia in 2006 was selected for analysis and verification. The 50% of landslide data were randomly selected to use as training data while the other 50% being used for verification. The probability of landslides for target years (1 year, 3 years, 10 years, 50 years, and 100 years) was calculated assuming that landslides are triggered by 1-day rainfall of 202 mm or 3-day cumulative rainfalls of 449 mm.

An Efficient Traning of Multilayer Neural Newtorks Using Stochastic Approximation and Conjugate Gradient Method (확률적 근사법과 공액기울기법을 이용한 다층신경망의 효율적인 학습)

  • 조용현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.98-106
    • /
    • 1998
  • This paper proposes an efficient learning algorithm for improving the training performance of the neural network. The proposed method improves the training performance by applying the backpropagation algorithm of a global optimization method which is a hybrid of a stochastic approximation and a conjugate gradient method. The approximate initial point for f a ~gtl obal optimization is estimated first by applying the stochastic approximation, and then the conjugate gradient method, which is the fast gradient descent method, is applied for a high speed optimization. The proposed method has been applied to the parity checking and the pattern classification, and the simulation results show that the performance of the proposed method is superior to those of the conventional backpropagation and the backpropagation algorithm which is a hyhrid of the stochastic approximation and steepest descent method.

  • PDF

Learning Bayesian Networks for Text Documents Classification (텍스트 문서 분류를 위한 베이지안망 학습)

  • 황규백;장병탁;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.262-264
    • /
    • 2000
  • 텍스트 문서 분류는 텍스트 형태로 주어진 문서를 종류별로 구분하는 작업으로 웹페이지 검색, 뉴스 그룹 검색, 메일 필터링 등이 분야에 응용될 수 있는 기반 작업이다. 지금까지 문서를 분류하는데는 k-NN, 신경망 등 여러 가지 기계학습 기법이 이용되어 왔다. 이 논문에서는 베이지안망을 이용해서 텍스트 문서 분류를 행한다. 베이지안망은 다수의 변수들간의 확률적 관계를 표현하는 그래프 모델로 DAG 형태인 망 구조와 각 노드에 연관된 지역확률분포로 구성된다. 그래프 모델을 사용할 경우 학습에 이용되는 각 속성들간의 관계를 사람이 알아보기 쉬운 형태로 학습할 수 있다는 장점이 있다. 실험 데이터로는 Reuters-21578 문서분류데이터를 이용했으며 베이안망의 성능은 나이브 베이즈 분류기와 비슷했다.

  • PDF