• Title/Summary/Keyword: 확률신경망

Search Result 261, Processing Time 0.028 seconds

Eddy Current Flaw Characterization Using Neural Networks (신경회로망을 이용한 와전류 결함 특성 평가)

  • Song, S.J.;Park, H.J.;Shin, Y.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.6
    • /
    • pp.464-476
    • /
    • 1998
  • Determination of location, shape and size of a flaw from its eddy current testing signal is one of the fundamental issues in eddy current nondestructive evaluation of steam generator tubes. Here, we propose an approach to this problem; an inversion of eddy current flaw signal using neural networks trained by finite element model-based synthetic signatures. Total 216 eddy current signals from four different types of axisymmetric flaws in tubes are generated by finite element models of which the accuracy is experimentally validated. From each simulated signature, total 24 eddy current features are extracted and among them 13 features are finally selected for flaw characterization. Based on these features, probabilistic neural networks discriminate flaws into four different types according to the location and the shape, and successively back propagation neural networks determine the size parameters of the discriminated flaw.

  • PDF

KACTEIL-NER: Named Entity Recognizer Using Deep Learning and Ensemble Technique (KACTEIL-NER: 딥러닝과 앙상블 기법을 이용한 개체명 인식기)

  • Park, Geonwoo;Park, Seongsik;Jang, Yoengjin;Choi, Kihyoen;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.324-326
    • /
    • 2017
  • 개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간 등과 같은 고유한 의미를 갖는 단어 열을 찾아 범주를 부착하는 기술이다. 기존의 연구에서는 단어 단위나 음절 단위를 입력으로 사용하였다. 하지만 단어 단위의 경우 미등록어 처리가 어려우며 음절 단위의 경우 단어 고유의 의미가 희석되는 문제가 발생한다. 이러한 문제들을 해결하기 위해 본 논문에서는 형태소 단위 개체명 인식기와 음절 단위 개체명 인식기를 앙상블하여 보정된 결과를 예측하는 개체명 인식기를 제안한다. 제안된 모델은 각각의 단일 입력 모델보다 향상된 F1-점수(0.8049)를 보였다.

  • PDF

실시간 CRM을 위한 분류 기법과 연관성 규칙의 통합적 활용;신용카드 고객 이탈 예측에 활용

  • Lee, Ji-Yeong;Kim, Jong-U
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.135-140
    • /
    • 2007
  • 이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.

  • PDF

Classification of Gene Expression Data by Ensemble of Bayesian Networks (앙상블 베이지안망에 의한 유전자발현데이터 분류)

  • 황규백;장정호;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.434-436
    • /
    • 2003
  • DNA칩 기술로 얻어지는 유전자발현데이터(gene expression data)는 생채 조직이나 세포의 수천개에 달하는 유전자의 발현량(expression level)을 측정한 것으로, 유전자발현양상(gene expression pattern)에 기반한 암 종류의 분류 등에 유용하다. 본 논문에서는 확률그래프모델(probabilistic graphical model)의 하나인 베이지안망(Bayesian network)을 발현데이터의 분류에 적응하며, 분류 성능을 높이기 위해 베이지안망의 앙상블(ensemble of Bayesian networks)을 구성한다. 실험은 실제 암 조직에서 추출된 유전자발현데이터에 대해 행해졌다 실험 결과, 앙상블 베이지안망의 분류 정확도는 단일 베이지안망보다 높았으며, naive Bayes 분류기, 신경망, support vector machine(SVM) 등과 대등한 성능을 보였다.

  • PDF

Data Fusion, Ensemble and Clustering for the Severity Classification of Road Traffic Accident in Korea (데이터융합, 앙상블과 클러스터링을 이용한 교통사고 심각도 분류분석)

  • 손소영;이성호
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.597-600
    • /
    • 2000
  • 계속적인 증가 추세를 보이고 있는 교통량으로 인해 환경 문제뿐 아니라 교통사고로 인한 사상자 및 물적피해가 상당량으로 집계되고 있다. 본 논문에서는 데이터융합 및 앙상블 클러스터링방법을 이용한 교통사고 심각도 분류분석방법을 제안함으로서 교통사고예방에 기여하고자 한다. 이를 위하여 신경망과 Decision-Tree기법을 이용하여 얻은 물적피해와 신체상해가 발생할 확률을 융합하는 전형적인 데이터 융합기법(템스터-쉐퍼, 베이지안 방법, 로지스틱융합방법)을 사용하였다. 또한, 분류정확도를 향상시키고자 Bootstrap 재추출 방법을 이용해 얻어진 여러 개의 분류예측 결과 중 다수의 분류결과를 선택하는 앙상블 (arcing, bagging)기법을 적용하였다. 더불어, 본 연구에서는 클러스터링 방법을 제시하고, 이 방법이 기존의 융합기법, 앙상블기법과 비교한 결과, 분류예측면에서 정확도가 향상됨을 보였다.

  • PDF

KACTEIL-NER: Named Entity Recognizer Using Deep Learning and Ensemble Technique (KACTEIL-NER: 딥러닝과 앙상블 기법을 이용한 개체명 인식기)

  • Park, Geonwoo;Park, Seongsik;Jang, Yoengjin;Choi, Kihyoen;Kim, Harksoo
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.324-326
    • /
    • 2017
  • 개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간 등과 같은 고유한 의미를 갖는 단어 열을 찾아 범주를 부착하는 기술이다. 기존의 연구에서는 단어 단위나 음절 단위를 입력으로 사용하였다. 하지만 단어 단위의 경우 미등록어 처리가 어려우며 음절 단위의 경우 단어 고유의 의미가 희석되는 문제가 발생한다. 이러한 문제들을 해결하기 위해 본 논문에서는 형태소 단위 개체명 인식기와 음절 단위 개체명 인식기를 앙상블하여 보정된 결과를 예측하는 개체명 인식기를 제안한다. 제안된 모델은 각각의 단일 입력 모델보다 향상된 F1-점수(0.8049)를 보였다.

  • PDF

Prognostic Modeling of Metabolic Syndrome Using Bayesian Networks (베이지안 네트워크를 이용한 대사증후군의 예측 모델링)

  • Park Han-Saem;Cho Sung-Bae;Lee Hong Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.292-294
    • /
    • 2005
  • 대사증후군은 당뇨병, 고혈압, 복부 비만, 고지혈증 등의 질병이 한 개인에게 동시에 발현하는 것을 말한다. 미국에서는 $25\%$ 이상의 성인이 대사성 증후군인 것으로 알려져 있으며, 경제 여건의 향상 및 식생활 습관의 변화와 함께 최근 우리나라에서도 심각한 문제가 되고 있다. 한편 불확실성의 처리를 위해 많이 사용되고 있는 베이지안 네트워크는 사람이 분석 가능한 확률 기반의 모델로 최근 의학 분야에서 지식 발견, 데이터 마이닝을 위한 도구로 유용하게 사용되고 있다. 본 논문에 서 는 대사증후군을 예측하는 문제를 다루며, 베이지안 네트워크와 의학 지식을 이용한 대사증후군의 예측 모델을 제안한다. 제안하는 모델을 통해 1993년의 데이터를 가지고 1995년의 상태를 예측하는 분류 실험을 수행하였으며, 실험 결과 다층 신경망, k-최근접 이웃 등의 분류기 보다 높은 $81.5\%$의 예측율을 보였다.

  • PDF

A Study on Single Vowels Recognition using VQ and Multi-layer Perceptron (VQ와 Multi-layer perceptron을 이용한 단모음 인식에 관한 연구)

  • 안태옥;이상훈;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.55-60
    • /
    • 1993
  • 본 논문은 불특정 화자의 단모음 인식에 관한 연구로써, VQ(Vectro Quantization)와 MLP(multi-layer perceptron)에 의한 음성 인식 방법을 제안한다. 이 방법은 VQ codebook을 구하고 이를 이용해서 관측열(observation sequence)을 구해각 codeword가 데이터로부터 가질 수 있는 확률값을 계산하여 이 값을 신경 회로망의 입력으로 사용하는 방법이다. 인식 대상으로는 한국어 단모음을 선정하였으며 10명의 남성 화자가 8개의 단모음을 10번씩 발음한 것으로 시스템의 효율성을 알아보기 위해 VQ/HMM(hidden markov model)에 의한 인식과 비교 실험한다. 실험 결과에 의하면, 시스템의 단순성에도 불구하고 학습능력애 뛰어난 관계로 VQ/HMM보다 VQ와 MLP에 의한 음성 인식률이 향상됨을 보여준다.

  • PDF

Sentence generation model with neural attention (Neural Attention을 반영한 문장 생성 모델)

  • Lee, Seihee;Lee, Jee-Hyung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.17-18
    • /
    • 2017
  • 자연어 처리 분야에서 대화문 생성, 질의응답 등과 같은 문장생성과 관련된 연구가 꾸준히 진행되고 있다. 본 논문에서는 기존 순환신경망 모델에 Neural Attention을 추가하여 주제 정보를 어느 정도 포함시킬지 결정한 뒤 다음 문장을 생성할 때 사용하는 모델을 제안한다. 이는 기존 문장과 다음 문장의 확률 정보를 사용할 뿐만 아니라 주제 정보를 추가하여 문맥적인 의미를 넣을 수 있기 때문에, 더욱 연관성 있는 문장을 생성할 수 있게 도와준다. 이 모델은 적절한 다음 문장을 생성할 뿐만 아니라 추가적으로 어떤 단어가 다음 문장을 생성함에 있어 주제문장에 더 민감하게 반응하는지 확인할 수 있다.

  • PDF

Classifying Seafloor Sediments Using a Probabilistic Neural Network (확률 신경망에 의한 해저 저질의 식별)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.3
    • /
    • pp.321-327
    • /
    • 2018
  • To classify seafloor sediments using a probabilistic neural network (PNN), the frequency-dependent characteristics of broadband acoustic scattering, which make it possible to qualitatively categorize seabed type, were collected from three different geographical areas in Korea. The echo data samples from three types of seafloor sediment were measured using a chirp sonar system operating over a frequency range of 20-220 kHz. The spectrum amplitudes for frequency responses of 35-75 kHz were fed into the PNN as input feature parameters. The PNN algorithm could successfully identify three seabed types: mud, mud/shell and concrete sediments. The percentage probabilities of the three seabed types being correctly classified were 86% for mud, 66% for mud/shell and 72% for concrete sediment.