• 제목/요약/키워드: 확률수문량

검색결과 231건 처리시간 0.033초

베이지안 방법을 이용한 정상성 및 비정상성 GEV모형의 불확실성 비교 연구 (Comparison Study of Uncertainty between Stationary and Nonstationary GEV Models using the Bayesian Inference)

  • 김한빈;주경원;정영훈;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.298-298
    • /
    • 2016
  • 최근 기후변화의 영향으로 시간에 따라 자료 및 통계적 특성이 변하는 비정상성이 다양한 수문자료에서 관측됨에 따라 비정상성 빈도해석에 대한 연구가 활발히 진행되고 있다. 비정상성 빈도해석에 사용되는 비정상성 확률 모형은 기존의 매개변수를 시간에 따라 변하는 공변량이 포함된 함수의 형태로 나타내기 때문에, 정상성 확률 모형에 비해 매개변수의 개수가 많으며 복잡한 형태를 가지게 된다. 따라서 본 연구에서는 비정상성 고려 시 모형이 복잡해짐에 따라 매개변수 및 확률 수문량의 불확실성이 어떻게 변하는지 알아보고자 하였다. 베이지안 방법은 매개변수 추정 및 확률 수문량의 산정 뿐 아니라 이에 대한 불확실성을 정량화할 수 있는 방법 중 하나이다. 따라서 베이지안 방법에서 매개변수 추정에 주로 쓰이는 Monte Carlo Markov Chain (MCMC) 방법 중 하나인 Metropolis-Hastings 알고리즘을 이용하여 정상성 및 비정상성 GEV모형에 대한 매개변수 및 확률수문량의 사후분포를 산정하였다. 산정된 사후분포의 사후구간을 통해 각 모형의 불확실성을 정량화하였으며, 계산된 불확실성의 비교를 통해 모형의 복잡성이 불확실성에 미치는 영향을 평가하였다.

  • PDF

유역특성으로부터 확률홍수량의 유도에 관한 연구 (The Derivation of the Frequency Formulae from the Basin Characteristics)

  • 양동율;고재웅
    • 물과 미래
    • /
    • 제14권3호
    • /
    • pp.37-46
    • /
    • 1981
  • 본 연구에서는 수문관측자료가 없는 지점에서도 확률홍수량을 구할 수 있는 확률홍수량의 산정공식을 유도하였다. 연구 대상유역으로는 한국의 주요하천인 한강, 금강, 영산강, 섬진강, 낙동강을 택하였고, 분석지점으로는 5대강 유역의 24개 수문관측소를 선정하여 여기서 얻은 홍수량자료를 Weibull-Plot와 Gumber-Chow 방법에 의한 분석을 통하여 T년 확률홍수량을 구하고 유역면적, 유로장, 유역형상계수, 유역평균경사, 하천경사를 확률홍수량에 영향을 미치는 지형인자로 하여, 이들 확률홍수량과 지형인자와의 상관관계를 분석하여 확률홍수량 공식을 유도하였다. Gumbel-Chow 방법에 의한 확률홍수량과 지형인자의 상관관계 분석결과, 유역면적 A의 상관이 너무 높게 나타나 위 방법에 따라 구한 확률홍수량과 지형인자와의 상관관계 분석결과에 의하여 재기년에 따른 확률 홍수량과 지형인자와의 상관관계 분석결과에 의하여 재기년에 따른 확률 홍수량 공식을 유도하였다.

  • PDF

확률 분포형의 극치 수문량 예측 능력 평가에 관한 연구 (A Study on the Estimation of Extreme Quantile of Probability Distribution)

  • 정진석;신홍준;안현준;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.399-400
    • /
    • 2017
  • 홍수나 가뭄 등 극치 현상의 통계분석 및 빈도해석에 있어 극치분포형이 널리 사용되고 있으며, 이러한 극치분포형의 특성을 이해하기 위해서는 분포형의 오른쪽 꼬리(right tail) 부분 특성을 자세히 분석할 필요가 있다. 이에 따라 본 연구에서는 Monte Carlo 모의를 통하여 다양한 극치분포형의 오른쪽 꼬리 부분의 통계적 특성 및 그 예측 능력을 연구하였다. 극치분포형으로는 우리나라 확률수문량 산정에 널리 활용되고 있는 generalized extreme value (GEV), Gumbel, generalized logistic 분포를 사용하였으며, 매개변수 산정 방법으로는 확률가중모멘트법을 사용하였다. 모의실험의 모분포로는 수문빈도해석에서 많이 사용되는 GEV 분포를 사용하였고, 30년 이상 자료를 보유한 기상청 지점 자료의 왜곡도를 조사하여 모의실험에 사용되는 모집단의 왜곡도로 가정하여 표본 자료를 발생시켰다. 예측 능력의 평가는 재현기간 10~1000년의 확률수문량을 왜곡도계수를 고려한 GEV 도시위치공식을 이용하여 GEV 확률지에 도시하고, 평균제곱근오차(root mean square error), 편의(bias), 평균상대오차(mean relative difference), 평균절대상대오차(mean absolute relative difference)를 이용하여 최적 분포형을 선정함으로써 이루어진다. 또한 예측 능력 평가결과의 타당성 확인을 위해 극치분포형의 적합정도를 잘 나타낸다고 알려진 modified Anderson-Darling 방법의 검정결과와 비교하여 적절성을 확인하였다.

  • PDF

비모수적 기법에 의한 확률론적 저수지 유입량 예측 (Probabilistic Reservoir Inflow Forecast Using Nonparametric Methods)

  • 이한구;김선기;조영현;정구열
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.184-188
    • /
    • 2008
  • 추계학적 시계열 분석은 크게 수문자료의 장기간 합성과 실시간 예측으로 구분해 볼 수 있다. 장기간 합성은 주로 수문자료의 추계적 특성을 반영한 수자원 시스템의 운영율 개발에 이용되어 왔다. 반면에 실시간 예측은 수자원 시스템의 순응적(adaptive) 관리에 적용되고 있다. 두 개념의 차이로 전자는 시계열 자료를 합성하여 발생 가능한 모든 수문조합을 얻고자 하는 것이라면 후자는 전 시간의 수문량을 조건으로 하는 다음 시간의 값을 순응적으로 예측하는 것이라 할 수 있다. 수문자료의 합성과 예측에는 크게 결정론적, 확률론적 방법의 두 가지 대별될 수 있다. 결정론적 모델링 방법에는 인공신경망이나 Fuzzy 기법 등을 이용할 수 있으며, 확률론적 방법에는 ARMAX 등의 모수적 기법과 k-NN(k-nearest neighbor bootstrap resampling), KDE(kernel density estimates), 추계학적 인공신경망 등의 비모수적 기법으로 분류할 수 있다. 본 연구에서는 대표적 비모수적 기법인 k-NN를 이용하여 충주댐을 대상으로 월 및 일 유입량 자료의 예측 정도를 살펴보았다. 전 시간 관측치를 조건으로 하는 다음 시간의 조건부 확률분포를 구하여 평균값을 계산한 후 관측치와 비교함으로써 모형의 정도를 살펴보았다. 그리고 실시간 저수지 운영에 이 기법의 활용성과 장단점도 살펴보았다. 모형개발 절차로 모형의 보정을 거쳐 검증을 실시하였다. 결론적으로 월 및 일 유입량 예측에 k-NN 기법이 실무적으로 적용될 수 있었으며, 장점으로는 k-NN 기법이 다른 기법보다 모델링 절차가 비교적 쉬워 저수지 운영 최적화 등 타 시스템과의 연계에 수월함이 인식되었다.

  • PDF

비정상성 확률분포 및 재현기간을 고려한 홍수빈도분석 (Flood Frequency Analysis Considering Probability Distribution and Return Period under Non-stationary Condition)

  • 이상호;김상욱;이영섭;김형배
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.610-610
    • /
    • 2015
  • 수공구조물의 설계에서는 홍수빈도분석을 통해 산정된 특정 재현기간에서의 확률수문량이 설계기준으로 사용된다. 그러나 최근 기후변화로 인해 이상기후 현상이 심해짐에 따라 수문기상자료의 정상성을 가정하는 기존의 홍수빈도분석은 변화되는 수문현상을 적절히 표현하지 못하는 경우가 많다. 본 연구에서는 확률분포의 모수가 시간에 따라 변화하는 비정상성 빈도분석기법을 적용하였으며 확률분포의 모수들을 최우추정법으로 추정하였다. 또한, 분위수 추정과정에서도 비정상성을 고려하여 정상성 가정에서 산정된 재현기간 및 위험도와 비교분석하였다. 확률분포는 GEV 분포를 사용하여 정상성 및 비정상성 모형 4개를 구축하였다. 특히, 비정상성 모형은 위치모수만 선형 경향성을 가지는 경우, 규모모수만 선형경향성을 가지는 경우, 위치 및 규모모수가 선형경향성을 가지는 경우의 3가지로 구분하여 적용하였다. 구축된 4개의 모형 중 적합모형을 선정하기 위해 우도비 검정과 Akaike 정보기준을 사용하였으며 적합모형선정 절차를 체계적으로 구축하고 적용하여 적합모형을 선정하였다. 본 연구에서 구축된 비정상성 홍수빈도분석 기법은 우리나라의 8개 다목적댐 (충주댐, 소양강댐, 안동댐, 임하댐, 합천댐, 대청댐, 섬진강댐, 주암댐)으로부터 취득된 과거 관측 댐 유입량을 대상으로 하여 적용되었다. 우도비 검정과 Akaike 정보기준을 이용한 적합 모형 선정 결과 합천댐과 섬진강댐이 비정상성 GEV 모형에 적합한 것으로 분석되었고, 나머지 지점의 다목적댐들은 정상성 모형에 적합한 것으로 분석되었다. 합천댐과 섬진강댐의 경우 비정상성 가정에서 산정된 재현기간이 정상성 가정에서 산정된 재현기간보다 매우 작게 산정되었으며 확률수문량과 위험도는 크게 산정되었다. 적합모형으로 정상성 모형이 선정된 6개의 다목적댐 중 소양강댐은 Mann-Kendall 비모수 경향성 검정 결과 유의하지는 않지만 비교적 큰 선형경향성을 가지고 있었다. 비록 비정상성 모형이 적합모형으로 선정되지는 않았지만 소양강댐에 비정상성 모형을 가정하여 재현기간과 확률수문량, 위험도를 분석한 결과 정상성 모형 가정에서 산정한 결과와 상당한 차이가 있었다. 이와 같은 결과는 수문자료의 정상성과 비정상성을 고려한 홍수빈도분석이 향후 수공구조물의 설계에 있어서 신뢰성 있는 확률수문량을 결정하는데 도움이 될 것으로 판단된다.

  • PDF

지역빈도해석에 의한 미래 확률강우량 전망 기법의 개발 (Development of rainfall quantile projection technique based on regional frequency analysis)

  • 남우성;엄명진;안현준;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.335-335
    • /
    • 2012
  • 기후변화에 의한 미래 수문량 전망에 대한 연구는 전지구 모델 결과를 바탕으로 이루어진다. 현재 전지구 모델의 모의 결과 생산된 강우 자료는 기상청에서 제공되며, 제공된 자료는 기상청 관측 지점에 국한되어 있다. 어떤 유역의 확률홍수량 전망은 유역내 강우 지점의 확률강우량을 강우-유출 모형인 HEC-1에 입력하여 추정할 수 있다. 한강 유역과 같은 대유역의 확률홍수량을 구하기 위해서는 유역내 기상청 관측 지점만으로는 지점수가 부족하기 때문에 국토해양부나 수자원공사 관할의 지점 자료를 활용한다. 하지만 이러한 대유역의 미래 확률홍수량을 전망하고자 하는 경우에 제공되는 전지구 모델 결과가 기상청 지점에 국한되어 있어 다른 지점의 확률강우량을 산정하는 데 어려움이 있다. 본 연구에서는 이러한 문제를 보완하기 위해 지역빈도해석을 이용하여 미래 전망 자료가 없는 지점들의 확률강우량을 추정하였다. 지역빈도해석을 수행하기 위해서는 관측 자료가 있는 유역내 지점들의 특성치(site characteristics)를 바탕으로 지역을 구분하고, Hosking and Wallis(1997)가 제안한 이질성 척도(heterogeneity measure)를 근거로 구분된 지역의 수문학적 동질성 여부를 검토하며, 각 지역에 대한 성장곡선(growth curve)를 추정한다. 지역별로 추정된 성장곡선에 지점의 연최대값 평균을 곱하면 그 지점의 확률강우량을 추정할 수 있다. 따라서 미래 기간의 지역별 성장곡선과 지점의 연최대값 평균을 전망할 수 있으면, 미래 기간의 지점별 확률강우량을 산정할 수 있고, 이를 바탕으로 확률홍수량도 전망할 수 있다. 이를 위해 본 연구에서는 전지구 모델에서 모의된 강우 자료를 바탕으로 미래 기간의 성장곡선을 추정하고, 과거 대비 미래 기간의 지속기간별 연최대값 평균의 비율을 산정하여 모의 자료가 없는 지점에 적용함으로써 미래 기간의 연최대값 평균을 산정하였으며, 이를 바탕으로 미래 기간의 확률강우량을 산정하도록 하였다. 이 기법의 신뢰도를 검증하기 위해 관측 자료를 두 기간으로 구분하여, 이 기법을 적용하여 추정한 확률강우량과 관측 자료로부터 산정한 확률강우량을 비교하였다.

  • PDF

무유출의 고려를 통한 용담댐 유역에 수문모형의 구축 (Accounting for zero flows to develop a hydrological model for Yongdam Basin)

  • 이동기;안국현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.138-138
    • /
    • 2020
  • 본 연구에서는 우리나라에서 발생하는 무유출량을 고려하는 확률기반 격자형 수문 모형을 용담댐 유역에 구축하였다. 용담댐 유역은 무유출량이 종종 나타나는 간혈하천 (Ephemeral catchment) 유역으로 우리나라의 많은 유역들이 여기에 해당한다. 격자형 수문 모형의 구축을 위하여 Sacramento Soil Moisture Accounting Model (SAC-SMA) 유출 모형을 사용하여 라우팅 모형과 결합하였다. 무유출량을 표현하기 위해서 본 연구에서는 검열된 오류 모형 (censoring error model)을 사용하였다. 구축한 오류 모형과 기존에 많이 사용되는 정규화된 오류 모형의 비교를 하였으며 이를 통하여 본 연구에서 구축한 모형의 적합성을 평가하였다. 결과적으로 본 연구에서 구축한 두 개의 모형이 둘 다 신뢰할 만한 결과를 보여주지만 검열된 오류 모형이 더 적합한 결과를 보여주며 무유출의 빈도 증가에 따라 효율이 증가하는 것을 보여 준다. 그리고 기존의 방법론은 확률 기반의 유출량의 표현에 있어서 0 이하의 음수값을 표현하여 현실적이지 못한 수문 모델링을 표현한다. 따라서 본 연구에서 얻어진 결과는 간헐하천 유역에 대한 고려가 우리나라에 수문 모델 구축에 있어서 필요하다는 것을 의미한다.

  • PDF

인공신경망 군집분석을 이용한 지역빈도해석에 관한 연구 - 낙동강 유역을 중심으로 (A Study on the Regional Frequency Analysis Using the Artificial Neural Network Method - the Nakdong River Basin)

  • 안현준;김성훈;정진석;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.404-404
    • /
    • 2017
  • 이상기후현상으로 인해 극치 수문 사상들이 빈번히 발생함에 따라 상대적으로 높은 재현기간에 해당하는 극치 수문 사상해석에 대한 관심이 높아지고 있다. 그러나 우리나라의 경우 이러한 극치 수문 사상을 추정하기 위한 표본의 수가 부족한 실정이다. 지역빈도해석은 지점의 표본 수가 적거나 수문자료의 수집이 불가능한 미계측지점인 경우, 해당 지점과 수문학적으로 동질하다고 여겨지는 주변 지점들의 자료를 확보하여 확률수문량을 추정함으로써 상대적으로 지점빈도해석 보다 roubst한 추정값을 얻을 수 있다는 장점을 가지고 있다. 따라서 최근 확률수문량 산정 기법으로 지역빈도해석 방법에 관한 관심이 높아지고 있다. 지역구분은 지역빈도해석이 지점빈도해석과 구분될 수 있는 큰 특징이고 지역구분 결과 따라 지역의 표본 크기가 결정되기 때문에 수문학적으로 동질한 지역을 나누는 방법은 매우 중요하다고 볼 수 있다. 인공신경망은 인간의 뇌가 학습하는 방식을 모사한 통계적 모델링 기법이다. 즉, 인간의 뇌가 일정한 반복 학습을 통해 어떠한 문제의 해법을 추론하거나 예측, 또는 패턴을 인식하는 일련의 과정을 알고리즘화 하여 목적함수의 해를 찾는 방식이다. 특히, 주어진 자료들로 부터 특징을 추출하고 그 특징을 학습하여 전체 자료의 분류나 군집화를 이루는데 널리 이용되고 있다. 본 연구에서는 낙동강유역을 대상으로 인공신경망을 이용한 군집분석을 수행하고 구분된 지역을 이용하여 지역빈도해석을 수행하였다.

  • PDF

설계강우량의 우량주상도 산정기법 개발 (Exploration of temporal distribution of design rainfall)

  • 김진영;김진국;유재웅;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.245-245
    • /
    • 2020
  • 설계홍수량의 결정은 하천기본계획, 댐 설계 등 수리·수문학적으로 중요한 변수 중 하나이다. 설계홍수량 산정을 위해서는 확률강우량 산정 및 강우-유출 모형의 일련의 과정을 통해 이루어지며, 홍수량 산정 표준지침(2018)에 자세히 수록되어 있다. 그러나 국내외 다양한 연구에서는 빈도별 확률홍수량의 경우 계측된 유량자료를 활용하여 직접 홍수빈도해석을 수행하는 것이 가장 정확한 방법이라 알려져 있지만, 홍수빈도해석을 위한 자연유량이 부족할 뿐만 아니라 홍수수문곡선(hydrograph)을 얻을 수 없는 단점이 있다. 더불어 우리나라의 경우 주요지점을 제외하고는 계측이 잘 이루어지지 않고 있으며, 수위-유량관계곡선(rating-curve)을 통해 산정된 유량자료를 활용하고 있어 자료의 신뢰성이 낮은 문제가 있다. 이러한 이유로 우리나라에서는 강우-유출 모형을 활용하여 빈도별 홍수량을 산정하고 있으며, 확률강우량의 시간분포를 입력자료로 하여 홍수수문곡선을 취득하고 있다. 그러나 확률강우량의 우량주상도 변환시 국내에서는 일반적으로 Huff 4분위법을 활용하지만, 실제홍수사상과 비교했을 때 과소 및 과대 추정하는 경우가 많다. 더불어 분포된 우량주상도를 면밀히 살펴보면 빈도해석된 확률강우량과 비교하였을 때 상당히 낮은 강우 빈도를 가지고 있다. 즉, 우량주상도는 특정 지속시간의 확률강우량을 Huff 분포를 활용하여 얻어지지만, 관측소별로 산정된 확률강우량의 빈도개념이 무너진다는 것이다. 이러한 결과로 인해 확률홍수량은 확률강우량과의 빈도개념의 상이하다고 할 수 있으며, 홍수빈도해석과의 비교에서도 차이를 보이고 있어 우량주상도의 개선 연구가 필요하다. 따라서 본 연구에서는 기존에 일관적으로 사용되어지는 Huff 3분위 50%를 지양하고, Huff의 다양한 분위(quartile)과 Blocking 방법 등을 비교·검토하여 보다 국내 실정에 부합하는 확률강우량의 우량주상도를 제공할 수 있는 연구를 진행하고자 한다.

  • PDF

Index Flood법과 Netmax법을 이용한 지역빈도해석의 비교 연구 (Comparative Study on Regional Frequency Analysis Using Index Flood Method and Netmax Method)

  • 김지훈;김경덕;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1132-1136
    • /
    • 2004
  • 본 논문은 지금까지의 지점빈도해석의 약점을 보완하기 위하여 지역화의 개념을 사용한 지역빈도해석의 방법에 관한 연구이다. 지점빈도해석은 수문자료의 관측기간이 짧은 경우 정확도에 문제를 발생시킬 수 있으므로, 지점 내 충분한 수의 자료 확보가 선행되어야 한다. 반면 지역빈도해석의 경우 우리나라와 같이 자료의 수가 부족한 경우에도 효율적이고 안정적인 확률수문량을 산정할 수 있다. 본 연구에서는 한강유역의 강우자료 선별을 통해 신뢰성 있는 자료를 구축한 훈, L-모멘트기법과 Netmax법을 사용한 지역빈도해석을 각각 실시하여 기존의 방법으로 산정한 수문량과 비교${\cdot}$분석하였다. 지역빈도해석의 결과 남한강 유역은 이질성 척도가 큰 것으로 판명되어 남한강 유역의 경우 지역적인 세분화가 필요한 것으로 나타났다. Netmax를 이용하여 산정된 수문량은 L-모멘트법과 지점빈도해석 그리고 확률강우량도에 의해 산정된 값에 비하여 과소추정 되었다 지역적 특수성을 고려하지 않고 형성된 네트워크는 지역적으로 세분화가 필요한 지역에 대하여서 좋지 않은 결과를 보여주는 것으로 나타났다.

  • PDF