• 제목/요약/키워드: 확률분포형

검색결과 386건 처리시간 0.027초

우리나라 도시배수시스템 설계를 위한 확률강우강도식의 유도 (A Derivation of Rainfall Intensity-Duration-Frequency Relationship for the Design of Urban Drainage System in Korea)

  • 이재준;이정식
    • 한국수자원학회논문집
    • /
    • 제32권4호
    • /
    • pp.403-415
    • /
    • 1999
  • 본 연구에서는 우리나라 강우에 대한 대표 확률분포형을 결정하고 결정된 대표 확률분포형에 의거하여 확률강우강도식을 유도한다. 빈도해석에 널리 사용되는 11개 분포형에 대하여 모멘트법과 최우추정법 및 확률가중모멘트법으로 모수를 추정하고, 적정성이 있는 모수를 대상으로 적합도 검정을 실시하여 지속기간별로 각 지점의 적정분포형을 구한다. 전 지역의 강우 동질성을 검정하는 방법으로 비모수적 검정방법인 Mann-Whitney 검정과 Kruskal-Walls 검정을 실시하여 우리나라 전역을 대표할 수 있는 대표 적정분포형을 구한다, 강우의 동질성 검정을 실시한 결과, 우리나라 전역을 대표할 수 있는 적정분포형을 선정할 수 없었으며, 12개 지속기간에 대하여 강우의 동질성이 있는 여러 개의 권역으로 구분하여 권역별 대표 확률분포형을 결정하였다. I,II,V 권역에서는 GEV 분포,III,IV 권역에서는 TypeIII 극차분포가 대표 적정분포형으로 선정되었으며, 이들 대표 적정분포형으로부터 얻어진 확률강우량을 이용하여 확률강우강도식을 유도하였다.

  • PDF

무작위성을 보이는 지반정수의 확률분포 및 변동성 (Probabilistic Distribution and Variability of Geotechnical Properties with Randomness Characteristic)

  • 김동휘;이주형;이우진
    • 한국지반공학회논문집
    • /
    • 제25권11호
    • /
    • pp.87-103
    • /
    • 2009
  • 지반정수의 신뢰성 높은 확률분포형을 결정하기 위해서는 분석자료에 대한 이상치 및 무작위성 검정, 적용한 확률 분포형의 매개변수 추정 및 매개변수 적합성 검정, 마지막으로 확률분포형의 적합성 검정의 과정이 필요하며, 위의 순서로 지반정수의 확률분포형을 산정할 것을 제안하였다. 본 연구에서는 제안한 절차에 따라 분석대상 지반으로 선정된 인천 송도지역 지반정수들의 확률분포형을 추정하였으며, 추가로 지반정수들의 변동성을 나타내는 변동계수를 산정하였다. 이와 같이 신뢰성 높은 지반정수들의 확률분포형과 변동계수는 확률론적 설계방법에 사용될 수 있을 뿐만 아니라 결정론적 설계에 사용될 지반정수의 합리적인 결정에 사용될 수 있는 중요한 자료로 판단된다.

확률 분포형의 극치 수문량 예측 능력 평가에 관한 연구 (A Study on the Estimation of Extreme Quantile of Probability Distribution)

  • 정진석;신홍준;안현준;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.399-400
    • /
    • 2017
  • 홍수나 가뭄 등 극치 현상의 통계분석 및 빈도해석에 있어 극치분포형이 널리 사용되고 있으며, 이러한 극치분포형의 특성을 이해하기 위해서는 분포형의 오른쪽 꼬리(right tail) 부분 특성을 자세히 분석할 필요가 있다. 이에 따라 본 연구에서는 Monte Carlo 모의를 통하여 다양한 극치분포형의 오른쪽 꼬리 부분의 통계적 특성 및 그 예측 능력을 연구하였다. 극치분포형으로는 우리나라 확률수문량 산정에 널리 활용되고 있는 generalized extreme value (GEV), Gumbel, generalized logistic 분포를 사용하였으며, 매개변수 산정 방법으로는 확률가중모멘트법을 사용하였다. 모의실험의 모분포로는 수문빈도해석에서 많이 사용되는 GEV 분포를 사용하였고, 30년 이상 자료를 보유한 기상청 지점 자료의 왜곡도를 조사하여 모의실험에 사용되는 모집단의 왜곡도로 가정하여 표본 자료를 발생시켰다. 예측 능력의 평가는 재현기간 10~1000년의 확률수문량을 왜곡도계수를 고려한 GEV 도시위치공식을 이용하여 GEV 확률지에 도시하고, 평균제곱근오차(root mean square error), 편의(bias), 평균상대오차(mean relative difference), 평균절대상대오차(mean absolute relative difference)를 이용하여 최적 분포형을 선정함으로써 이루어진다. 또한 예측 능력 평가결과의 타당성 확인을 위해 극치분포형의 적합정도를 잘 나타낸다고 알려진 modified Anderson-Darling 방법의 검정결과와 비교하여 적절성을 확인하였다.

  • PDF

모의 실험을 이용한 Right-tail quantiles의 극치 분포형 비교 평가에 관한 연구 (A Study on the Assessment of Right-tail Prediction Ability of Extreme Distributions using Simulation Experiment)

  • 정진석;김태림;송현근;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.158-158
    • /
    • 2016
  • 본 연구에서는 극치 분포의 오른쪽 꼬리 부분 예측 시 안정적인 확률수문량 산정하는 확률분포형과 매개변수 추정 방법을 평가하기 위해 Monte Carlo 모의를 수행하였다. 수문자료의 빈도해석에 적합한 것으로 알려진 generalized extreme value (GEV), Gumbel (GUM), generalized logistic (GLO), gamma3 (GAM3), normal (NOR), log-normal3 (LN3) 총 6개의 확률분포형을 바탕으로 오른쪽 꼬리 부분의 확률수문량 추정 성능을 모의 실험을 통해 평가하고자 한다. 30년 이상 자료를 보유한 기상청 지점의 지속기간별 연최대값 자료를 분석한 결과를 바탕으로 모분포를 GEV분포로 선정하였으며 평균이 1.0, 표준편차 0.5, 왜곡도 계수는 0.5, 1.0, 2.0, 3.0, 4.0이 되도록 가정하였다. 또한 자료 길이에 따른 성능 평가를 위해 표본 크기 20, 50, 100, 150, 200개에 대해 분석을 수행하였다. 위와 같은 가정으로 총 25종류(왜곡도계수 5개 ${\times}$ 표본 크기 5개)의 발생된 모분포에 6가지의 확률분포형과 3가지의 매개변수 추정방법(모멘트법, 최우도법, 확률가중모멘트법)을 조합한 18가지의 모델을 비교 분석해보았다. 평가방법으로는 평균 제곱근 오차(Root Mean Square Error, RMSE), 편의(bias), 평균 상대오차(Mean Relative Difference, MRD), 평균 절대 상대오차(Mean Absolute Relative Difference, MARD)를 사용하여 적용 모델의 성능을 비교 분석하였다.

  • PDF

Bayesian GEV분포를 이용한 확률강우량 추정 및 불확실성 평가 (A Study on Estimation of Design Rainfall and Uncertainty Analysis Based on Bayesian GEV Distribution)

  • 권현한;김진영
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.366-366
    • /
    • 2012
  • 확률강우량은 하천설계, 수자원설계 및 계획을 위한 기초자료로 활용되며 최근 이상기후 및 기후변화로 인한 극치강우의 빈도 및 양적 증가로 인한 확률강우량 산정의 불확실성 분석에 대한 관심이 크게 증가하고 있다. 수문빈도 해석에 있어서 대부분 지역이 50년 이하의 수문자료가 이용되고 있으며 수문설계에서 요구되는 50년 이상의 확률강수량 추정시에는 상당한 불확실성을 내포하고 있다. 이러한 점에서 본 연구에서는 자료연수에 따른 Sampling Error와 분포형의 매개변수의 불확실성을 고려한 해석모형을 구축하고자 한다. 빈도해석에서 매개변수를 추정하기 위해서는 일반적으로 모멘트법, 최우도법, 확률가중모멘트법이 이용되고 있으나 사용되는 분포형에 따라서 통계학적으로 불확실성 구간을 정량화하는 과정이 난해할 뿐만 아니라 극치 수문자료가 Thick-Tailed분포의 특성을 가짐에도 불구하고 신뢰구간 산정시 정규분포로 가정하는 등 기존 해석 방법에는 많은 문제점을 내포하고 있다. 본 연구에서는 이러한 매개변수의 불확실성 평가에 있어서 우수한 해석능력을 발휘하는 Bayesian기법을 도입하여 분포형의 매개변수를 추정하고 매개변수 추정과 관련된 불확실성을 평가하고자 한다. 이와 별개로 자료연한에 따른 Sampling Error를 추정하기 위해서 Bootstrapping 기반의 해석모형을 구축하고자 하며 최종적으로 빈도해석시에 나타나는 불확실성을 종합적으로 검토하였다. 빈도해석을 위한 확률분포형으로 GEV(generalized extreme value)분포를 이용하였으며 Gibbs 샘플러를 활용한 Bayesian Markov Chain Monte Carlo 모의를 기본 해석모형으로 활용하였다.

  • PDF

최소 표현 라플라스 변환에 기초한 단계형 확률변수의 시뮬레이션에 관한 연구 (Simulation of the Phase-Type Distribution Based on the Minimal Laplace Transform)

  • 김선교
    • 한국시뮬레이션학회논문지
    • /
    • 제33권1호
    • /
    • pp.19-26
    • /
    • 2024
  • 단계형 확률분포는 마코프 체인이 특정 상태로 흡수되는 시점까지 거쳐가는 여러 단계에서 체재하는 시간들의 합으로 정의되며 대기행렬 시스템과 신뢰성 분석 모형 등에 광범위하게 사용된다. 연속적 단계형 분포의 경우 흡수 상태로 진입하기까지 거쳐가는 각각의 단계에서의 체재 시간이 지수분포를 따르므로 연속적 단계형 분포는 다양한 지수분포들의 합 또는 볼록 결합으로 나타낼 수 있다. 단계형 분포를 생성하는 가장 일반적이면서도 직관적인 방법은 마코비안 표현방법이라 불리는 초기 확률벡터와 전이 생성행렬에 의해 주어지는 조건부 확률을 이용하는 것이다. 적률이 주어진 상황에서 단계형 변수를 생성하는 방법에 대한 기존의 연구들은 대부분 적률을 마코비안 표현방법으로 변환하는 것을 전제로 하고 있다. 본 연구에서는 적률을 마코비안 표현방법으로 변환하지 않고 확률 분포함수를 결정하여 단계형 확률변수를 생성하는 방법에 대해 살펴보고 마코프 표현을 사용하는 기존의 방법 대신에 조단 분해법과 최소 표현 라플라스 변환을 이용하여 2계 단계형 확률변수를 분포함수를 결정하는 공식과 절차를 제시한다. 이러한 접근 방법은 고차원의 단계형 확률분포를 이용하여 대기행렬의 시뮬레이션을 하는 경우에 마코비안 표현방법의 전이행렬을 결정하여 변수를 생성하는 경우보다 효율적이다.

한강 인도교지점에서의 홍수빈도해석에 대한 고찰 (Flood Frequency Analysis at Indogyo Station in Han River Basins)

  • 이영석;김경덕;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1098-1102
    • /
    • 2004
  • 본 연구에서는 수도권을 포함하는 한강하류부에서 가장 중요한 측수지점중 하나인 인도교지점의 연 최대 홍수량 자료에 내해서 빈도해석을 시행하였다. 자료를 3개의 자료(자료 I : $1918\~1940$, 자료 II: $1952\~2002$, 자료 III: 결측치를 제외한 $1918\~2002$)로 구분하였으며, 수문자료에 일반적으로 많이 사용하는 13가지 확률 분포형을 적용하여 매개변수를 추정한 뒤 적합성여부를 판정하였으며, 적합도 검정방법 및 도시적인 방법을 통하여 적정 확률분포형을 선정하였고, 채택된 분포형(gamma-3, GEV, Gumbel, Weibull-2)에 내하여 확률홍수량을 산정하였다. 또한, 위치도시공식(plotting position formula)과 역사적 홍수정보(historic information)를 이용한 빈도해석 결과와도 비교${\cdot}$분석하였다. 그 결과 확률분포형 가운데에는 GEV와 Gumbel 분포형이 인도교지점의 홍수빈도해석에 적합한 것으로 판단된다.

  • PDF

GLO분포를 대상으로 왜곡도 계수를 고려한 확률도시 상관계수 검정통계량 추정 (A Study on Estimation of Probability Plot Correlation Coefficient Considering the Skewness for GLO distribution)

  • 안현준;신홍준;김수영;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.39-39
    • /
    • 2015
  • 극치 수문(Hydrologic extremes)분야에서는 수문자료의 분포에 따라 Gumbel, GEV, 그리고 GLO 분포와 같은 다양한 확률통계 분포형이 존재한다. GEV와 GLO 분포형의 경우 Gumbel 분포형과 달리 형상매개변수가 포함된 3변수 분포형으로써 이상 기후 현상으로 인한 잦은 극치 수문사상을 표현하는데 좀 더 유연한 것으로 알려져 있다. 특히 GLO 분포형의 경우 영국에서 홍수빈도해석 시 적정분포형으로 선정된바 있다(Institute of Hydrology, 1999). 다양한 분포형 중에서 표본 자료를 대표할 수 있는 분포형을 선정하는 통계적 기법이 적합도 검정이다. 적합도 검정에는 $x^2$-검정, Cramer von-Mises 검정, Kolmogorov-Smirnov 검정, PPCC(probability plot correlation coefficient, 확률도시 상관계수)검정 등이 있으며 그 중 PPCC 검정은 이용방법이 간편하면서도 뛰어난 기각능력을 보이는 것으로 알려져 있다. 본 연구에서는 극치 수문분야에서 널리 이용되고 있는 GLO 분포형을 대상으로 자료의 왜곡도 영향을 고려할 수 있는 확률도시 상관계수 검정의 검정통계량을 추정하여 보았다.

  • PDF

일반국도 설계시간계수의 적정 확률분포 선정 및 추정 (The Selection of Optimal Probability Distribution and Estimation for Design Hourly Factor in National Highway Roads)

  • 조준한;한종현;김성호;이병생
    • 대한교통학회지
    • /
    • 제24권6호
    • /
    • pp.33-43
    • /
    • 2006
  • 본 연구는 도로의 기능 및 통행특성. 차로수, 연평균일교통량 등을 고려하여 설계시간계수와의 관계를 살펴보고 적정 확률분포형 선정과 K값을 추정하였다 이를 위해 2005년도 상시 교통량 조사지점에서 수집된 교통자료를 이용하여 14개의 확률분포형을 적용하였다. 각 확률분포형은 최우도법을 이용하여 매개변수를 추정하였으며 각 분포형별로 매개변수 적합성 조건을 검토하였다. 적정 확률분포형의 결정은 chi-square검정을 통하여 대상 분포형의 기각유무를 판단하였으며. 그 결과에 대해 우선순위를 정하여 적정 확률분포형을 선정하였다. 그리고 각 유형별 AADT에 따른 적정 K계수를 추정하였다. 그 결과, 지방부 2차로 및 4차로. 도시부, 관광부도로의 적정 확률분포형은 각각 Pearson V, LogLogistic, LogLogistic, Extreme value 분포로 분석되었으며 적정 K계수는 각각 $0.1{\sim}0.2,\;0.09{\sim}0.14,\;0.07{\sim}0.13,\;0.1{\sim}0.2$로 추정되었다.

수문자료의 이변량 확률분포형 매개변수 추정 개선을 위한 Monte-Carlo 모의실험 (Monte-Carlo Simulation for Parameter Estimation of Bivariate Probability Distribution for Hydrological Data)

  • 주경원;김성훈;정영훈;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.335-335
    • /
    • 2019
  • 최근 수문자료에 대한 다변량 빈도해석 연구가 활발히 이루어지고 있다. 하나의 자료를 확률변수로 사용하는 단변량 빈도해석에 비해 여러 수문자료를 조합하여 동시에 추정할 수 있는 다변량 빈도해석은 수문자료의 상관성을 고려하면서 확률분포형을 추정할 수 있다는 장점이 있다. 이에 다변량 확률분포형을 이용한 빈도해석 과정 중 정확한 매개변수 추정을 위한 연구도 최근 여러방면으로 이루어지고 있다. 본 연구에서는 다변량 확률분포형의 매개변수 추정방법 중 기존에 주로 사용되고 있는 의사최우도법(MPL, Maximum Pseudo-Likelihood method)의 성능을 개선하기 위해 기존의 방법과 본 연구에서 제안하는 매개변수 추정방법의 Monte-Carlo 모의실험을 수행하였다. 일반적으로 수문자료는 양(+)의 왜곡도계수를 갖기 때문에 GEV(Geveralized Extreme Value) 분포형을 모분포로 하여 각 방법의 정확성을 검토하였다. 모의실험을 수행한 결과, 기존의사최우도법에서 Weibull 식을 이용하여 순위통계량을 계산하는 방법보다 본 연구에서 제안한 왜곡도를 고려하는 순위통계량을 사용하는 것이 더 정확한 매개변수 추정결과를 보여주는 것으로 나타났다.

  • PDF