본 연구에서는 우리나라 강우에 대한 대표 확률분포형을 결정하고 결정된 대표 확률분포형에 의거하여 확률강우강도식을 유도한다. 빈도해석에 널리 사용되는 11개 분포형에 대하여 모멘트법과 최우추정법 및 확률가중모멘트법으로 모수를 추정하고, 적정성이 있는 모수를 대상으로 적합도 검정을 실시하여 지속기간별로 각 지점의 적정분포형을 구한다. 전 지역의 강우 동질성을 검정하는 방법으로 비모수적 검정방법인 Mann-Whitney 검정과 Kruskal-Walls 검정을 실시하여 우리나라 전역을 대표할 수 있는 대표 적정분포형을 구한다, 강우의 동질성 검정을 실시한 결과, 우리나라 전역을 대표할 수 있는 적정분포형을 선정할 수 없었으며, 12개 지속기간에 대하여 강우의 동질성이 있는 여러 개의 권역으로 구분하여 권역별 대표 확률분포형을 결정하였다. I,II,V 권역에서는 GEV 분포,III,IV 권역에서는 TypeIII 극차분포가 대표 적정분포형으로 선정되었으며, 이들 대표 적정분포형으로부터 얻어진 확률강우량을 이용하여 확률강우강도식을 유도하였다.
지반정수의 신뢰성 높은 확률분포형을 결정하기 위해서는 분석자료에 대한 이상치 및 무작위성 검정, 적용한 확률 분포형의 매개변수 추정 및 매개변수 적합성 검정, 마지막으로 확률분포형의 적합성 검정의 과정이 필요하며, 위의 순서로 지반정수의 확률분포형을 산정할 것을 제안하였다. 본 연구에서는 제안한 절차에 따라 분석대상 지반으로 선정된 인천 송도지역 지반정수들의 확률분포형을 추정하였으며, 추가로 지반정수들의 변동성을 나타내는 변동계수를 산정하였다. 이와 같이 신뢰성 높은 지반정수들의 확률분포형과 변동계수는 확률론적 설계방법에 사용될 수 있을 뿐만 아니라 결정론적 설계에 사용될 지반정수의 합리적인 결정에 사용될 수 있는 중요한 자료로 판단된다.
홍수나 가뭄 등 극치 현상의 통계분석 및 빈도해석에 있어 극치분포형이 널리 사용되고 있으며, 이러한 극치분포형의 특성을 이해하기 위해서는 분포형의 오른쪽 꼬리(right tail) 부분 특성을 자세히 분석할 필요가 있다. 이에 따라 본 연구에서는 Monte Carlo 모의를 통하여 다양한 극치분포형의 오른쪽 꼬리 부분의 통계적 특성 및 그 예측 능력을 연구하였다. 극치분포형으로는 우리나라 확률수문량 산정에 널리 활용되고 있는 generalized extreme value (GEV), Gumbel, generalized logistic 분포를 사용하였으며, 매개변수 산정 방법으로는 확률가중모멘트법을 사용하였다. 모의실험의 모분포로는 수문빈도해석에서 많이 사용되는 GEV 분포를 사용하였고, 30년 이상 자료를 보유한 기상청 지점 자료의 왜곡도를 조사하여 모의실험에 사용되는 모집단의 왜곡도로 가정하여 표본 자료를 발생시켰다. 예측 능력의 평가는 재현기간 10~1000년의 확률수문량을 왜곡도계수를 고려한 GEV 도시위치공식을 이용하여 GEV 확률지에 도시하고, 평균제곱근오차(root mean square error), 편의(bias), 평균상대오차(mean relative difference), 평균절대상대오차(mean absolute relative difference)를 이용하여 최적 분포형을 선정함으로써 이루어진다. 또한 예측 능력 평가결과의 타당성 확인을 위해 극치분포형의 적합정도를 잘 나타낸다고 알려진 modified Anderson-Darling 방법의 검정결과와 비교하여 적절성을 확인하였다.
본 연구에서는 극치 분포의 오른쪽 꼬리 부분 예측 시 안정적인 확률수문량 산정하는 확률분포형과 매개변수 추정 방법을 평가하기 위해 Monte Carlo 모의를 수행하였다. 수문자료의 빈도해석에 적합한 것으로 알려진 generalized extreme value (GEV), Gumbel (GUM), generalized logistic (GLO), gamma3 (GAM3), normal (NOR), log-normal3 (LN3) 총 6개의 확률분포형을 바탕으로 오른쪽 꼬리 부분의 확률수문량 추정 성능을 모의 실험을 통해 평가하고자 한다. 30년 이상 자료를 보유한 기상청 지점의 지속기간별 연최대값 자료를 분석한 결과를 바탕으로 모분포를 GEV분포로 선정하였으며 평균이 1.0, 표준편차 0.5, 왜곡도 계수는 0.5, 1.0, 2.0, 3.0, 4.0이 되도록 가정하였다. 또한 자료 길이에 따른 성능 평가를 위해 표본 크기 20, 50, 100, 150, 200개에 대해 분석을 수행하였다. 위와 같은 가정으로 총 25종류(왜곡도계수 5개 ${\times}$ 표본 크기 5개)의 발생된 모분포에 6가지의 확률분포형과 3가지의 매개변수 추정방법(모멘트법, 최우도법, 확률가중모멘트법)을 조합한 18가지의 모델을 비교 분석해보았다. 평가방법으로는 평균 제곱근 오차(Root Mean Square Error, RMSE), 편의(bias), 평균 상대오차(Mean Relative Difference, MRD), 평균 절대 상대오차(Mean Absolute Relative Difference, MARD)를 사용하여 적용 모델의 성능을 비교 분석하였다.
확률강우량은 하천설계, 수자원설계 및 계획을 위한 기초자료로 활용되며 최근 이상기후 및 기후변화로 인한 극치강우의 빈도 및 양적 증가로 인한 확률강우량 산정의 불확실성 분석에 대한 관심이 크게 증가하고 있다. 수문빈도 해석에 있어서 대부분 지역이 50년 이하의 수문자료가 이용되고 있으며 수문설계에서 요구되는 50년 이상의 확률강수량 추정시에는 상당한 불확실성을 내포하고 있다. 이러한 점에서 본 연구에서는 자료연수에 따른 Sampling Error와 분포형의 매개변수의 불확실성을 고려한 해석모형을 구축하고자 한다. 빈도해석에서 매개변수를 추정하기 위해서는 일반적으로 모멘트법, 최우도법, 확률가중모멘트법이 이용되고 있으나 사용되는 분포형에 따라서 통계학적으로 불확실성 구간을 정량화하는 과정이 난해할 뿐만 아니라 극치 수문자료가 Thick-Tailed분포의 특성을 가짐에도 불구하고 신뢰구간 산정시 정규분포로 가정하는 등 기존 해석 방법에는 많은 문제점을 내포하고 있다. 본 연구에서는 이러한 매개변수의 불확실성 평가에 있어서 우수한 해석능력을 발휘하는 Bayesian기법을 도입하여 분포형의 매개변수를 추정하고 매개변수 추정과 관련된 불확실성을 평가하고자 한다. 이와 별개로 자료연한에 따른 Sampling Error를 추정하기 위해서 Bootstrapping 기반의 해석모형을 구축하고자 하며 최종적으로 빈도해석시에 나타나는 불확실성을 종합적으로 검토하였다. 빈도해석을 위한 확률분포형으로 GEV(generalized extreme value)분포를 이용하였으며 Gibbs 샘플러를 활용한 Bayesian Markov Chain Monte Carlo 모의를 기본 해석모형으로 활용하였다.
단계형 확률분포는 마코프 체인이 특정 상태로 흡수되는 시점까지 거쳐가는 여러 단계에서 체재하는 시간들의 합으로 정의되며 대기행렬 시스템과 신뢰성 분석 모형 등에 광범위하게 사용된다. 연속적 단계형 분포의 경우 흡수 상태로 진입하기까지 거쳐가는 각각의 단계에서의 체재 시간이 지수분포를 따르므로 연속적 단계형 분포는 다양한 지수분포들의 합 또는 볼록 결합으로 나타낼 수 있다. 단계형 분포를 생성하는 가장 일반적이면서도 직관적인 방법은 마코비안 표현방법이라 불리는 초기 확률벡터와 전이 생성행렬에 의해 주어지는 조건부 확률을 이용하는 것이다. 적률이 주어진 상황에서 단계형 변수를 생성하는 방법에 대한 기존의 연구들은 대부분 적률을 마코비안 표현방법으로 변환하는 것을 전제로 하고 있다. 본 연구에서는 적률을 마코비안 표현방법으로 변환하지 않고 확률 분포함수를 결정하여 단계형 확률변수를 생성하는 방법에 대해 살펴보고 마코프 표현을 사용하는 기존의 방법 대신에 조단 분해법과 최소 표현 라플라스 변환을 이용하여 2계 단계형 확률변수를 분포함수를 결정하는 공식과 절차를 제시한다. 이러한 접근 방법은 고차원의 단계형 확률분포를 이용하여 대기행렬의 시뮬레이션을 하는 경우에 마코비안 표현방법의 전이행렬을 결정하여 변수를 생성하는 경우보다 효율적이다.
본 연구에서는 수도권을 포함하는 한강하류부에서 가장 중요한 측수지점중 하나인 인도교지점의 연 최대 홍수량 자료에 내해서 빈도해석을 시행하였다. 자료를 3개의 자료(자료 I : $1918\~1940$, 자료 II: $1952\~2002$, 자료 III: 결측치를 제외한 $1918\~2002$)로 구분하였으며, 수문자료에 일반적으로 많이 사용하는 13가지 확률 분포형을 적용하여 매개변수를 추정한 뒤 적합성여부를 판정하였으며, 적합도 검정방법 및 도시적인 방법을 통하여 적정 확률분포형을 선정하였고, 채택된 분포형(gamma-3, GEV, Gumbel, Weibull-2)에 내하여 확률홍수량을 산정하였다. 또한, 위치도시공식(plotting position formula)과 역사적 홍수정보(historic information)를 이용한 빈도해석 결과와도 비교${\cdot}$분석하였다. 그 결과 확률분포형 가운데에는 GEV와 Gumbel 분포형이 인도교지점의 홍수빈도해석에 적합한 것으로 판단된다.
극치 수문(Hydrologic extremes)분야에서는 수문자료의 분포에 따라 Gumbel, GEV, 그리고 GLO 분포와 같은 다양한 확률통계 분포형이 존재한다. GEV와 GLO 분포형의 경우 Gumbel 분포형과 달리 형상매개변수가 포함된 3변수 분포형으로써 이상 기후 현상으로 인한 잦은 극치 수문사상을 표현하는데 좀 더 유연한 것으로 알려져 있다. 특히 GLO 분포형의 경우 영국에서 홍수빈도해석 시 적정분포형으로 선정된바 있다(Institute of Hydrology, 1999). 다양한 분포형 중에서 표본 자료를 대표할 수 있는 분포형을 선정하는 통계적 기법이 적합도 검정이다. 적합도 검정에는 $x^2$-검정, Cramer von-Mises 검정, Kolmogorov-Smirnov 검정, PPCC(probability plot correlation coefficient, 확률도시 상관계수)검정 등이 있으며 그 중 PPCC 검정은 이용방법이 간편하면서도 뛰어난 기각능력을 보이는 것으로 알려져 있다. 본 연구에서는 극치 수문분야에서 널리 이용되고 있는 GLO 분포형을 대상으로 자료의 왜곡도 영향을 고려할 수 있는 확률도시 상관계수 검정의 검정통계량을 추정하여 보았다.
본 연구는 도로의 기능 및 통행특성. 차로수, 연평균일교통량 등을 고려하여 설계시간계수와의 관계를 살펴보고 적정 확률분포형 선정과 K값을 추정하였다 이를 위해 2005년도 상시 교통량 조사지점에서 수집된 교통자료를 이용하여 14개의 확률분포형을 적용하였다. 각 확률분포형은 최우도법을 이용하여 매개변수를 추정하였으며 각 분포형별로 매개변수 적합성 조건을 검토하였다. 적정 확률분포형의 결정은 chi-square검정을 통하여 대상 분포형의 기각유무를 판단하였으며. 그 결과에 대해 우선순위를 정하여 적정 확률분포형을 선정하였다. 그리고 각 유형별 AADT에 따른 적정 K계수를 추정하였다. 그 결과, 지방부 2차로 및 4차로. 도시부, 관광부도로의 적정 확률분포형은 각각 Pearson V, LogLogistic, LogLogistic, Extreme value 분포로 분석되었으며 적정 K계수는 각각 $0.1{\sim}0.2,\;0.09{\sim}0.14,\;0.07{\sim}0.13,\;0.1{\sim}0.2$로 추정되었다.
최근 수문자료에 대한 다변량 빈도해석 연구가 활발히 이루어지고 있다. 하나의 자료를 확률변수로 사용하는 단변량 빈도해석에 비해 여러 수문자료를 조합하여 동시에 추정할 수 있는 다변량 빈도해석은 수문자료의 상관성을 고려하면서 확률분포형을 추정할 수 있다는 장점이 있다. 이에 다변량 확률분포형을 이용한 빈도해석 과정 중 정확한 매개변수 추정을 위한 연구도 최근 여러방면으로 이루어지고 있다. 본 연구에서는 다변량 확률분포형의 매개변수 추정방법 중 기존에 주로 사용되고 있는 의사최우도법(MPL, Maximum Pseudo-Likelihood method)의 성능을 개선하기 위해 기존의 방법과 본 연구에서 제안하는 매개변수 추정방법의 Monte-Carlo 모의실험을 수행하였다. 일반적으로 수문자료는 양(+)의 왜곡도계수를 갖기 때문에 GEV(Geveralized Extreme Value) 분포형을 모분포로 하여 각 방법의 정확성을 검토하였다. 모의실험을 수행한 결과, 기존의사최우도법에서 Weibull 식을 이용하여 순위통계량을 계산하는 방법보다 본 연구에서 제안한 왜곡도를 고려하는 순위통계량을 사용하는 것이 더 정확한 매개변수 추정결과를 보여주는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.