• Title/Summary/Keyword: 확률론적 해석

Search Result 438, Processing Time 0.03 seconds

Development of Flood Inundation Map by Applying Probabilistic Estimation Method of Levee Breach Outflow (제방붕괴유출량의 확률론적 산정기법을 적용한 홍수범람도 개발)

  • Nam, Myeong Jun;Lee, Jae Young;Lee, Chang Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.377-377
    • /
    • 2020
  • 이상기후변화에 따른 홍수피해는 매년 빈번히 발생하고 있고, 이러한 피해에 대비하여 예측 및 대응방안을 신속히 확보할 수 있는 재난예측 및 대응시스템은 필수로 요구되는 실정이다. 강우의 의한 홍수발생과 하천수위 급상승에 의한 제방의 월류 및 파제 메커니즘은 상당히 복잡하고 유동적이며 다양한 불확실성을 포함한다. 본 연구에서는 극치 강수량의 매개변수들의 불확실성을 고려하기 위해 수행된 비정상성 빈도해석 기반의 수문시나리오를 바탕으로 산정된 MCS(Monte Carlo Simulation)기반 확률홍수위를 산정하였고, 이를 활용하여 2차원 제내지 침수해석의 경계조건으로 활용하여 홍수위 변동에 의한 하천 제방 붕괴 변동폭의 범위를 설정하고, 그에 따른 제방붕괴 유출량의 변동 범위를 산정하였다. 또한 확률론적 파제 유입량에 의한 제내지의 침수심과 침수범위를 MCS기반의 2차원 제내지 침수해석을 통해 정량화하여 확률침수심도를 작성하였다. 이러한 홍수발생의 전반적인 메커니즘을 고려하여 매개변수들의 불확실도를 정량적으로 평가함으로써 기존의 결정론적 해석기법보다 신뢰성 있는 침수심 예측결과를 확보하였다.

  • PDF

Stochastic Model Comparison for the Breakup and Atomization of a Liquid Jet using LES (LES 해석에서 액체제트의 분열에 대한 확률론적 분열 모델링 비교)

  • Yoo, YoungLin;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.447-454
    • /
    • 2017
  • A three-dimensional two-phase large eddy simulation(LES) has been conducted to investigate the breakup and atomization of liquid jets such as a diesel jet in parallel flow and water jet in cross flow. Gas-liquid two-phase flow was solved by a combined model of Eulerian for gas flow and Lagrangian for a liquid jet. Two stochastic breakup models were implemented to simulate the liquid column and droplet breakup process. The penetration depth and SMD(Sauter Mean Diameter) were analyzed, which was comparable with the experimental data.

Probabilistic Nonlinear Analysis of Semi-Rigid Frames Considering Random Elastic Modulus (탄성계수 불확실성을 고려한 반강접 프레임 구조의 확률적 비선형 거동 해석)

  • Kim, Dae Young;Noh, Hyuk Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.191-198
    • /
    • 2013
  • In this paper, the effects of uncertain material constant on the nonlinear behavior of steel frames with semi-rigid joints are examined. As to the probabilistic model, a normal distribution is assumed to simulate the uncertain elastic modulus of steel material. A nonlinear structural analysis program, which can consider both semi-rigidity in joints of the steel frames and uncertainty in the material constant, is developed. Including the geometric, material and connection nonlinearites which are the parameters of nonlinear behavior of steel frames, probabilistic analysis is conducted based on the Monte-Carlo simulation. In the probabilistic analyses, we consider the three different cases for random variables. The deterministic analysis results are shown to be in good agreement with those of the previous research results in the literature. As to the probabilistic analyses, it is observed that the coefficient of variation(COV) of displacements increases as the loading increases, and that the values of COV are dependent on the structural features of the frames.

Analysis of the Optimal Separation Distance between Multiple Thermal Energy Storage (TES) Caverns Based on Probabilistic Analysis (확률론적 해석에 기반한 다중 열저장공동의 적정 이격거리 분석)

  • Park, Dohyun;Kim, Hyunwoo;Park, Jung-Wook;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • Multiple thermal energy storage (TES) caverns can be used for storing thermal energy on a large scale and for a high-aspect-ratio heat storage design to provide good thermal performance. It may also be necessary to consider the use of multiple caverns with a reduced length when a single, long tunnel-shaped cavern is not suitable for connection to aboveground heat production and injection equipments. When using multiple TES caverns, the separation distance between the caverns is one of the significant factors that should be considered in the design of storage space, and the optimal separation distance should be determined based on a quantitative stability criterion. In this paper, we described a numerical approach for determining the optimal separation distance between multiple caverns for large-scale TES utilization. For reliable stability evaluation of multiple caverns, we employed a probabilistic method which can quantitatively take into account the uncertainty of input parameters by probability distributions, unlike conventional deterministic approaches. The present approach was applied to the design of a conceptual TES model to store hot water for district heating. The probabilistic stability results of this application demonstrated that the approach in our work can be effectively used as a decision-making tool to determine the optimal separation distance between multiple caverns. In addition, the probabilistic results were compared to those obtained through a deterministic analysis, and the comparison results suggested that care should taken in selecting the acceptable level of stability when using deterministic approaches.

Probabilistic Analysis for Stability Evaluation of Landslides Using Geo-spatial Information (지형공간 정보를 활용한 산사태 안정평가의 확률론적 해석)

  • Park, Byung-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.55-62
    • /
    • 2006
  • The purpose of the current research is to evaluate the possibility of landslides by using geo-spatial information system. Geological information has been summarized and stability analysis for infinite slopes has been conducted based on the force equilibrium. In addition, the analysis of landslides was performed based on probabilistic approach by using probabilistic variables which can include uncertainty of input parameters. For the purpose of testifing the applicability of the analysis method actual geological data from a construction site was obtained, thereby performing both a preliminary analysis for a large area and detailed analysis for a better result. As a result of the current analysis several issues such as the possibility of development of landslides, detailed analysis of where landslides are most likely to be developed were analysed by using two concepts of safety and index of failure probability.

  • PDF

Design Sensitivity and Reliability Analysis of Plates (판구조물의 설계감도해석 및 신뢰성해석)

  • 김지호;양영순
    • Computational Structural Engineering
    • /
    • v.4 no.4
    • /
    • pp.125-133
    • /
    • 1991
  • For the purpose of efficiently calculating the design sensitivity and the reliability for the complicated structures in which the structural responses or limit state functions are given by implicit form, the probabilistic finite element method is introduced to formulate the deterministic design sensitivity analysis method and incorporated with the second moment reliability methods such as MVFOSM, AFOSM and SORM. Also, the probabilistic design sensitivity analysis method needed in the reliability-based design is proposed. As numerical examples, two thin plates are analyzed for the cases of plane stress and plate bending. The initial yielding is defined as failure criterion, and applied loads, yield stress, plate thickness, Young's modulus and Poisson's ratio are treated as random variables. It is found that the response variances and the failure probabilities calculated by the proposed PFEM-based reliability method show good agreement with those by Monte Carlo simulation. The probabilistic design sensitivity evaluates explicitly the contribution of each random variable to probability of failure. Further, the design change can be evaluated without any difficulty, and their effect on reliability can be estimated quickly with high accuracy.

  • PDF

Probabilistic Analysis of Liquefaction Induced Settlement Considering the Spatial Variability of Soils (지반의 공간변동성을 고려한 액상화에 의한 침하량의 확률론적 해석)

  • Bong, Tae-Ho;Kim, Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.5
    • /
    • pp.25-35
    • /
    • 2017
  • Liquefaction is one of the major seismic damage, and several methods have been developed to evaluate the possibility of liquefaction. Recently, a probabilistic approach has been studied to overcome the drawback of deterministic approaches, and to consider the uncertainties of soil properties. In this study, the spatial variability of cone penetration resistance was evaluated using CPT data from three locations having different variability characteristics to perform the probabilistic analysis considering the spatial variability of soil properties. Then the random fields of cone penetration resistance considering the spatial variability of each point were generated, and a probabilistic analysis of liquefaction induced settlement was carried out through CPT-based liquefaction evaluation method. As a result, the uncertainty of soil properties can be overestimated when the spatial variability is not considered, and significant probabilistic differences can occur up to about 30% depending on the allowable settlement.

Evaluation of Chloride Behavior and Service Life in Long-Term Aged FA Concrete through Probabilistic Analysis (장기재령 FA 콘크리트에 대한 염화물 거동 및 확률론적 염해 내구수명 평가)

  • Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.276-285
    • /
    • 2020
  • In this study, accelerated chloride diffusion tests were performed on OPC(Ordinary Portland Cement) and FA(Fly Ash) concrete considering three levels o f W/B(Water to Binder) ratio o n 1,095 curing days. The accelerated chloride diffusion coefficient and the passed charge were evaluated in accordance with Tang's method and ASTM C 1202, and the resistance performance to chloride attack improved over time. FA concrete showed excellent resistance performance against chloride penetration with help of pozzolanic reaction. As the result of the passed charge, FA concrete showed durability improvement, "low" grade to "very low" grade, but OPC concrete changed "moderate" grade to "low" grade at 1,095 curing days. After assuming the design variables used for durability design as normal distribution functions, the service life of each case was evaluated by the probabilistic analysis method based on MCS(Monte Carlo Simulation). In FA concrete, the increase of probability of durability failure was lower than that of OPC concrete with increasing time, because the time-dependent coefficient of FA concrete was up to 3.2 times higher than OPC concrete. In addition, the service life by probabilistic analysis was evaluated lower than the service life by deterministic analysis, since the target probability of durability failure was set to 10%. It is considered that more economical durability design will be possible if the mo re suitable target probability of durability failure is set for various structures through researches on actual conditions and indoor tests under various circumstances.

Column Shortening Prediction of Concrete Filled Tubes using Monte Carlo Method (몬테카를로 기법을 이용한 CFT 기둥축소량의 예측)

  • Jang, Sung-Woo;Song, Hwa-Cheol;Sho, Kwang-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.75-84
    • /
    • 2010
  • According to the available study and experimental data about the long term behavior of CFT(Concrete Filled Tube) columns, the creep and of concrete in CFT columns are smaller than those of RC columns because of the confinement effect of outer steel columns. In this study, the uncertainties associated with assumed values for concrete properties such as strength, creep coefficients, and service load have been considered and analyzed for the prediction of time-dependent column shortening of CFT column. The CFT column shortening analysis using Monte Carlo method is proposed and an of a 37 story tall building with CFT columns is studied for illustration. According to the results obtained by the probability analysis with multi parameters, the effect of variation coefficient for 3 parameters is investigated considering confidence interval.

  • PDF

Probabilistic Seepage Analysis by the Finite Element Method Considering Spatial Variability of Soil Permeability (투수계수의 공간적 변동성을 고려한 유한요소법에 의한 확률론적 침투해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.93-104
    • /
    • 2011
  • In this paper, a numerical procedure of probabilistic steady seepage analysis that considers the spatial variability of soil permeability is presented. The procedure extends the deterministic analysis based on the finite element method to a probabilistic approach that accounts for the uncertainties and spatial variation of the soil permeability. Two-dimensional random fields are generated based on a Karhunen-Lo$\grave{e}$ve expansion in a fashion consistent with a specified marginal distribution function and an autocorrelation function. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses were performed to verify the application potential of the proposed method and to study the effects of uncertainty due to the spatial heterogeneity on the seepage behavior of soil foundation beneath water retaining structure with a single sheet pile wall. The results showed that the probabilistic framework can be used to efficiently consider the various flow patterns caused by the spatial variability of the soil permeability in seepage assessment for a soil foundation beneath water retaining structures.