• Title/Summary/Keyword: 확공

Search Result 26, Processing Time 0.022 seconds

Numerical Analysis of Uplift Behavior of Anchor Expanded by Pulse Discharge Technology (펄스 방전에 의해 확공된 앵커의 인발 거동에 대한 수치 해석)

  • Park, Hyun-Ku;Lee, Seung-Rae;Kim, Tae-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1095-1102
    • /
    • 2010
  • 본 연구에서는 펄스 방전 기술에 의해 확공된 앵커의 인발 거동에 대한 수치해석을 수행하였다. 펄스 방전 현상을 등가의 폭발 현상으로 모델링하여 점성토와 사질토 지반에 대한 확공해석을 수행하였으며 이를 통해 펄스 방전에 의해 개량된 지반 조건을 구현하였다. 확공된 지반에 대해 설치된 압축형 그라우트 앵커의 인발 거동을 시뮬레이션하여 인발력-인발변위 곡선을 산정하였다. 해석 결과, 점성토의 경우에는 확공 정도가 인발 거동과 밀접한 관련을 갖는 반면, 사질토의 경우에는 확공 정도 이외의 추가적인 증가 요인이 확인되는 것으로 나타났으며 펄스 방전 기술이 사질토 지반의 다짐을 통해 앵커의 인발력을 증가시키는 것으로 판단되었다.

  • PDF

Numerical analysis of borehole expansion induced by PDT in sandy soils (펄스 방전에 의한 사질토지반 시추공 확공에 대한 수치해석)

  • Park, Hyun-Ku;Lee, Seung-Rae;Kim, Tae-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.260-266
    • /
    • 2010
  • 본 연구에서는 사질토 지반에서 펄스 방전(PDT)에 의한 확공 현상을 평가하기 위한 수치해석 연구를 수행하였다. 수중 폭발 모델을 기반으로 PDT적용을 통해 시추공 내부의 시멘트 페이스트에 발생하는 충격파를 모델링하였고, 이를 바탕으로 사질토 지반에 유발되는 변형을 유체-구조물 연동해석을 통해 예측하였다. 해석 결과, 수치해석을 통한 예측이 문헌에 언급된 지반 확공 정도에 대한 실험 결과와 부합하는 것으로 나타났다. 또한 펄스 방전에 의해 지반의 응력 증가 및 체적 압축 등의 지반 다짐효과를 파악할 수 있었다.

  • PDF

Technical Trends and Patent Analysis for Reaming Bits (확공비트의 기술동향 및 특허분석)

  • Min, Kyung-Nam;Jung, Chan-Muk;Kim, Gyui-Woong
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • We analyzed the patent trends for whole drilling bits to reveal the main R&D directions, focusing on patents applied for and registered in Korea, the USA, Japan, and Europe. The technology was classified into two groups as a primary classification step (reaming systems and fixed systems), and into seven groups as a secondary classification step (sliding, odex, horizontal pivot, vertical pivot, concentric, eccentric, and etc.). A total of 33,614 patents were retrieved and 870 patents were selected for final effective analysis by data deduplication and filtering. A portfolio analysis using the correlation between the number of patents and the applicants for each patents revealed a sliding system as the key technology with greatest growth potential. From an analysis of the barriers to patents being granted, we emphasize the need to avoid similar topics existing patents or patent applications and to develop differential technology.

Numerical Simulation of Ground Expansion Induced by Pulse Discharge Technology (펄스 방전 기술에 의한 지반 확공 현상 수치해석 모사)

  • Park, Hyun-Ku;Lee, Seung-Rae;Kim, Seon-Ju;Cho, Gyu-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.25-34
    • /
    • 2010
  • In the present paper, a numerical study was carried out to simulate ground expansion induced by an application of pulse discharge technology. Based on laboratory pulse discharge tests, the characteristics of shockwave were investigated, and then the laboratory tests were numerical1y simulated using underwater explosion model implemented in a coupled acoustic-structural finite element analysis. In addition, for clayey soils, the expansion of ground was also studied using soil properties obtained from empirical correlations with SPT N values. It was found that the calculation results well agreed with the field test results.

The Evaluation of Bearing Resistance of Underreamed Ground Anchor through Realistic Model Experiments (실모형실험을 통한 지압형 앵커의 지압력 평가)

  • Min, Kyongnam;Lee, Jaewon;Lee, Junggwan;Lee, Dongwon;Jung, Chanmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.87-92
    • /
    • 2014
  • The Ground anchor is reinforcement to resist pull-out through ground that is used supports structure. The pull-out resistance of anchor is constructed by skin friction resistance from compression borehole wall in expanded wings and bearing pressure from the ground. Especially, underreamed ground anchor is reinforcement that adopts active reinforcement to prevent deformation of ground using bearing resistance generated reaming anchorage. This study is conducted to calculate bearing resistance of underreamed ground anchor. Realistic model tests were fulfilled to determine bearing resistance of anchor, and correlate results of tests to Uniaxial Compressive Strengths (UCS) of ground models that assumed weathered rock condition in 8 case. In a comprehensive series of the tests, the bearing resistances were measured by pull-out tests. The bearing resistances derived from tests have a linear correlation with UCS. We also suggest empirical equation between bearing resistance and UCS of rocks by single linear regression analyses. In test results of this study, the bearing resistances were evaluated approximately 13 times higher than UCS of the grounds, and it is qualitatively similar to numerical values of pull-out force derived from theory.

Improvement of Grouting by Short-period Vibration Energy (단주기 진동에너지에 의한 그라우팅 보강효과)

  • Seo, Moonbok;Kwon, Sanghoon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.35-42
    • /
    • 2015
  • Grouting method has been widely used for the ground improvement and stabilization: mostly to block or control the ground water in the early years and to improve the ground, repair the structure in recent years, ever increasing its use. Despite many advantages so far, the existing grouting method also has some shortcomings including uncertain permeation of grouting with gravity type if the voids between the soil particles are narrow, and problems due to the relaxation of the neighboring ground when injected using injection pressure. As an alternative, a vibration injection method with constant amplitude and frequency has been developed in recent years, with the vibration grouting being reported to have a permeability increasing effect of grout material compared with the positive pressure injection type. Accordingly, the purpose of this study is to investigate the improvement effect of the vibration grouting that applies short-period vibration energy by varying vibration cycle, vibration time and ground conditions to evaluate the strength enhancing effect of grouting materials, expansion effect of grouting body, ground improvement effect of the grouting and the penetration characteristics of the rock joint. The findings of this study show the improved compressive strength of grout, expansion of grouting body and increased penetration rate, according to the vibration compared with non-vibration under the loose soil condition.