• Title/Summary/Keyword: 화학 혼화제

Search Result 68, Processing Time 0.02 seconds

The Strength and Durability of Polymer-Cement Mortars (폴리머-시멘트 모르타르의 강도와 내구성)

  • Hwang, Eui-Hwan;Hwang, Taek-Bung;Ohama, Yoshihiko
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.786-794
    • /
    • 1994
  • The strength and durability of polymer-cement mortars were investigated. The specimens of polymer-cement mortar were prepared by using styrene-butadiene rubber(SBR) latex, ethylene-vinyl acetate(EVA) emulsion and polyacrylic ester(PAE) emulsion with various polymer-cement ratios(5, 10, 15, 20wt%). For the evaluation of durability of polymer-cement mortars, freezing-thawing, acid resistance and heat resistance tests were conducted. With an increase of polymer-cement ratio, the frost resistance of polymer-cement mortars was greatly improved, but acid and heat resistance were deteriorated. The compressive and flexural strengths of SBR polymer-cement mortars were improved with an increase of polymer-cement ratio, whereas those of EVA and PAE polymer-cement mortars reached maximum value at polymer-cement ratio of 10wt%.

  • PDF

Development of Polymer-Concrete Composite(I) - Physical Properties of Polymer-Cement Concrete Composites - (폴리머-콘크리트 복합재료 개발(I) - 폴리머-시멘트 콘크리트의 물성 -)

  • Hwang, Eui-Hwan;Kil, Deog-Soo;Oh, In-Seok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.979-984
    • /
    • 1997
  • Test specimens of polymer-cement concrete composites were prepared using styrene-butadiene rubber(SBR) latex, ethylenevinyl acetate(EVA) and polyacrylic ester(PAE) emulsions as polymer dispersions in cement modified system at constant slump($10{\pm}0.5cm$), then compressive and flexural strengths water absorption, pore size distribution, and microstructures were investigated. Compressive and flexural strengths of these composites were remarkably improved with an increase of polymer-cement ratio. These composites had a desirable pore size distribution against frost damage due to a small capillary pore volume. Continuous polymer film was able to form in higher than 15% of polymer cement ratio.

  • PDF

A Study on the Mobility Properties of Cement Paste by Fine Fowers of Pozzolan Chemical Adixtures (포졸란계 미분말 및 화학혼화제에 의한 시멘트페이스트의 유동특성에 관한 연구)

  • 김도수;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.25-29
    • /
    • 1995
  • To perform high-strength of concrete, fine powers of pozzolan such as fly ash, silica fume mixed with cement. But mobility of cement and concrete decreased due to using of these powers. To control decrease of this mobility, it is required that mobility is improved by using of chemical admixture such as superplasticizer. We used admixtures -NSF, NM-2, NT-2 etc- in order to improve mobility of cement paste being substituted by 10, 20% of pozzolans respectively. It proved that optimum dosage of NSF, NT-2 was 2.0% for being substituted 10%, 3.0% for 20% so as to increase mobility of cement paste mixed paste mixed with fine powers of pozzolan at W/C=0.40.

  • PDF

A Trend and Market in Eco-friendly Plasticizers: Review and Prospective (친환경 가소제의 시장과 동향)

  • Oh, Eunyoung;Kim, Baek-hwan;Suhr, Jonghwan
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.232-241
    • /
    • 2022
  • Plasticizers are chemical additives added to polymers to have a desirable effect on mechanical properties such as processability and ductility. In this paper, we explore the use and market of eco-friendly plasticizers that can replace phthalate-based plasticizers that have been traditionally used in the plastics market. Bio plasticizers are derived primarily from biomass sources, including agricultural products, by-products and wastes. Regardless of the source of biomass, an ideal eco-friendly plasticizer should be non-toxic, have high resistance to volatilization, extraction, and migration, have good compatibility and compatibility, and be economical. The global bio plasticizer market is expected to reach USD 2.1 billion by 2030 from USD 1.3 billion in 2020, growing at a CAGR of 5.31% from 2021 to 2030.

Preparation of Nylon6,6/Polyaniline Conducting Composite and Their Electrical Properties with the Content of Plasticizer (가소제 첨가에 따른 Nylon6,6/Polyaniline 전도성 복합체의 제조 및 전기적 성질)

  • Lee, Wan-Jin;Kim, Hyo-Yong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.979-984
    • /
    • 1998
  • The conducting composites were prepared by blending of polyaniline(PANI) as conducting polymer and nylon6,6 as matrix in m-cresol. The PANI was protonated with alkylbenzenesulfonic acid such as camphorsulfonic acid(CSA) or dodecylbenzenesulfonic acid(DBSA). The miscibility of the composites was improved and the electrical conductivity was increased by adding dioctylphthalate(DOP). The electrical conductivity of the composites depending on the amount of protonating agent and PANI complex and the morphology were investigated. When it was protonated with DBSA having long alkyl chain and the content of PANI complex was 25 wt%, the electrical conductivity of the compsosite was increased up to 1.02 S/cm.

  • PDF

Possibility of Using Landfill Coal Ash as CLSM Material for Emergency Restoration of Ground and Road Joint Parts (지반 및 도로 공동부의 긴급복구용 CLSM 재료로 매립 석탄저회 활용 가능성)

  • Jin-Man Kim;Sang-Chul Shin;Kyoung-Nam Min;Ha-Seog Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.55-61
    • /
    • 2023
  • This study aims to develop CLSM fill material for emergency restoration using landfill coal ash. As a result of examining physical properties such as particle size distribution and fines content of landfill coal ash, bottom ash, fly ash, and general soil were mixed, and SP was found to have a density of 2.03 and a residual particle pass rate of 7.8 %. CLSM materials that secure fluidity in unit quantities without using chemical admixtures such as glidants and water reducing agents have a high risk of material separation due to bleeding. As a result of this experiment, it was found that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for 4 hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it is judged that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.

Study on Improving Properties of Tile Cement Mortar by Mixing of Additives (Additives의 혼합에 의한 Tile Cement Mortar 물성향상 연구)

  • Lee, Moo-Jin;Shin, Young-Jo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.486-490
    • /
    • 1999
  • In this study, to improve the required properties of tile cement mortar such as excellent water retention capacity (WRC), workability, open time, sag resistance, and tile adhesive strength, tile cement mortars containing the several additives with different ratio were compared and analyzed. By adding small amount of synthesized starch to hydroxypropyl methylcellulose (HPMC) which is used for improving WRC, the decrease of moisture evacuation from mortar surface was observed and the workability of mortar was improved with long open time. Polyacrylamide (PAAm) and ethylencvinyl acetate (EVAc) were also added in order to increase the adhesion of tile. As a results, the saggings of mortar itself and tile were decreased and the adhesive strength of mortar between base and tile was enhanced. By adding melment, the workability was improved by increasing the fluidity of mortar. It is postulated that the properties of tile cement mortar was improved by adding 0.80~1.20% of HPMC, 0.10~0.15% of starch, 0.001~0.015% of PAAm, 0.05~0.10% of EVAc and 0.003~0.005% of melment to the cement mortar.

  • PDF

The Study on Synthesis and Application of Polymer Dispersion for Cement Modifier -The Waterproffing Effeet of Cement Mortar by Poly[DMA-co-DAMA] Emulsion- (시멘트 혼화용 폴리머 합성과 그 응용에 관한 연구 -Poly[DMA-co-DAMA] 에멀젼을 이용한 시멘트 모르타르의 방수성-)

  • Kim, Young-Geun;Herh, Dong-Seop;Park, Hong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.669-680
    • /
    • 1994
  • DMA-co-DAMA were synthesized from 2-diethylaminoethyl metacrylate and dodecyl-metacrylate containing long chain hydrocarbon group with hydrophilic and hydrophobic radicals. To facilitate water emulsification,acrylic copolymer was cationized by acetic acid to produce acetated acrylic copolymer. The structures of the synthesized copolymer and acetated copolymers were confirmed by IR, NMR, and molecular weight was measured by GPC, and C. H. N elemental analysis. Acetated acrylic copolymers were perfectly emulsified in water and showed increased emulsion stability. Polymer dispersion for cement modifier(PDCM-PDD) was prepared by blending of the guaternized acrylic copolymer synthesized above sodium silicate sodium gluconate oleic acid and triethanol amine. The result with prepared polymer dispersion of cement modfier was examined, and it was found that excellent waterproffing effect; Water permeability ratio is 0.44 under the water pressure of $100g/cm^2$ and 0.55 under $3kg/cm^2$, and water absorption ratio is 0.36~0.47 and 1.02 compressive strength ratio at mixed ratio of water/PDCM-PDD is 45 times.

  • PDF

Suppression of Meloidogyne arenaria by different treatments of Pasteuria penetrans (Pasteuria penetrans의 처리방법에 따른 땅콩뿌리혹선충 (Meloidogyne arenaria) 방제효과)

  • Zhu, Yong-Zhe;Park, Dong-Sik;Cho, Myoung-Rae;Hur, Jang-Hyun;Lim, Chun-Keun
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.437-441
    • /
    • 2005
  • This study was investigated to compare the suppression of Meloidogyne arenaria by different treatments of Pasteuria penetrans which is known for biological control agent against Meloidogyne spp.. In order to select proper number of P. penetrans showing good suppression effect, P. penetrans were mixed with M, arenaria for attachment using three different concentration such as $3{\times}10^4$, $3{\times}10^5$ and $3{\times}10^6$ endospores/5 g medium, followed by treating them onto the roots of tomato. After 14 weeks incubation, P. penetrans at $3{\times}10^6$ endospores showed highest activity against the formation of gall caused by M, arenaria. At a dose of $3{\times}10^5$ endospores/5 g medium, P. penetrans was treated into soil either mixing with soil or spray onto soil surface for comparing of suppressive efficacy. When the antagonistic bacterium was treated by the former method, it suppressed more effectively Using P. penetrans at $3{\times}10^6$ endospores and mixing with soil method, suppression was compared among P. penetrans, $PASTORIA^{(R)}$(Japan) and $Fosthiazate^{(R)}$(Korea). P. penetrans was more potent than $PASTORIA^{(R)}$(Japan) and as similar as $Fosthiazate^{(R)}$(Korea). Therefore, these results suggested that P. penetrans can be used for controling of M. arenaria as biological control agent. Furthermore, thess results can be provided to develop environmentally-friendly nematicide.

Preparation and Characteristics of Polypyrrole/sulfonated Poly(2,6-dimethyl-1,4-phenylene oxide) Composite Electrode (폴리피롤/설폰화 폴리(2,6-디메틸-1,4-페닐렌 옥사이드) 복합전극의 제조 및 특성)

  • Huh, Yang-Il;Jung, Hong-Ryun;Lee, Wan-Jin
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.74-79
    • /
    • 2007
  • Polypyrrole (PPy) was made by an emulsion polymerization using iron (III) chloride ($FeCl_3$) as an initiator and dodecyl benzene sulfuric acid (DBSA) as an emulsifier and dopant. Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) was sulfonated by chlorosulfonic acid (CSA). The cathode was composed of $PPy^+DBS^-$ complex, conductor powder, and PPO or sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) (SPPO) as a binder or dopant. The charge-discharge performance of $PPy^+DBS^-/SPPO$ cathode was increased as the extent of about 50%, than $PPy^+DBS^-/PPO$. This is because SPPO played a role as a binder as well as a dopant. In addition, sulfonation brings out the increase of miscibility between PPy and SPPO, and the increase of contact area between cathode and electrolyte.