• Title/Summary/Keyword: 화학 수소화물

Search Result 68, Processing Time 0.026 seconds

Continuous Coprecipitantion Preconcentration-Hydride Generation for Arsenic in Inductively Coupled Plasma-Atomic Emission Spectrometry (연속적 공침 선농축-수소화물 발생법을 이용한 ICP-AES에서의 비소의 감도 개선)

  • Kim, Chang-Gyu;Pak, Yong-Nam
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.583-589
    • /
    • 2004
  • In a stream of aqueous sample, trace arsenic ions were quantitatively coprecipitated and detected in ICP-AES through hydride generation. In was used as a coprecipitating reagent. The precipitate was collected on a filter and dissolved by HCl. The eluted As was sent into the reaction coil to generate hydrides and analyzed by ICP. With optimal conditions, and with a sample of 0.3 mL, an enrichment of 70 was obtained with the sampling speed of 10/hr. When compared with coprecipitation and hydride generation technique, the sensitivity was increased by 7 and 10 times, respectively. The limit of detection limit$(3{\sigma})$ was 0.020 ${\mu}g\;L^{-1}$ and the precision was 7-10%. Separation of $As^{3+}\;and\;As^{5+}$ were possible using citric acid in hydride generation.

Study of the Electrode Catalyst for Direct Borohydride Fuel Cel (알칼리 붕소 수소화물 직접이용 연료전지에서의 전극촉매 연구)

  • Jun Chang-Sung;Song Kwang Ho;Kim Sung Hyun;Lee Kwan-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.299-302
    • /
    • 2005
  • Direct Borohydride Fuel Cell은 알칼리 붕소 수소화물의 수용액을 이용하는 연료전지로 연료의 직접 산화반응을 통해 기존의 DMFC(직접 메탄을 연료전지)보다 높은 전류밀도와 OUV(Open Circuit Voltage)를 나타낸다. 또한 액체 연료를 사용하므로 장치 구성이 간단하며, 사용하는 연료가 반응성이 높은 알칼리 붕소 수소화물로 이루어져 있기 때문에 탄화수소 계열의 액체 연료와 달리 전기화학 반응이 비귀금속 전극에서도 쉽게 이루어질 수 있다는 장점을 가지고 있다 하지만 강알칼리 조건에서 전기화학 반응이 진행되므로 이에 적합한 재료로 장치를 구성해야 하며, 액체 상태의 연료가 전해질을 투과하는 현상인 크로스오버 문제를 해결해야 하고, 생성물인 $BO_2$-가 침적되어 전지효율을 떨어뜨리는 것을 방지해야 하는 문제점이 있다. 또한 알칼리 붕소 수소화물이 물과 반응하여 수소를 발생시키는 hydrolysis 반응을 억제하여야 하고 직접 산화반응만이 진행될 수 있도록 전지를 구성해야 연료효율을 높일 수 있다. 따라서 본 연구에서는 수소 생성반응일 hydrolysis 반응은 억제하고 연료의 직접 산화반응만을 진행시키기 위한 전극촉매에 대하여 연구하였다. 일반적인 저온형 연료전지의 전극촉매로 사용하는 Pt등의 귀금속 촉매와, 귀금속 촉매를 대체할 수 있는 Ni등의 비귀금속 촉매를 그 연구 대상으로 하였으며, 평가 방법으로는 unit cell station을 이용한 단위전지 성능측정 실험과 Potentiostat/Galvanostat을 이용한 half cell 실험을 병행하여 수행하였다.

  • PDF

Development of Fuel Cell Power System for Unmanned Aerial Vehicle (무인 항공기용 연료 전지 동력 시스템 개발)

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.87-90
    • /
    • 2007
  • Fuel cell power system was developed for high-endurance unmanned aerial vehicle (UAV). Liquid chemical hydride was selected as a fuel due to its high energy density. Liquid storage of the fuel is an ideal alternative solution of the existing compressed hydrogen storage. The fueling system that extracts hydrogen from chemical hydride consists of catalytic reactor, micro-pump, fuel cartridge, separator, and controller. The fuel cell power system including the fueling system and the fuel cell that generates electricity was integrated into a proposed UAV. The performance verification of the fuel cell power system was performed to use as a power plant of the UAV.

  • PDF

A Study on the Synthesis of Titanium Hydride by SHS(Self-propagating High-temperature Synthesis) Method and the Preparation of Titanium Powder (SHS법에 의한 티타늄 수소화물 합성 및 티타늄 분말 제조에 관한 연구)

  • Ha, Ho;Park, Seung-Soo;Lee, Hee-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.263-273
    • /
    • 1994
  • Titanium powder prepared by dehydrogenating the titanium hydride which is synthesized by reacting Ti-sponge (99.67%) with hydrogen using the self-propagating high-temperature synthesis method. In the synthesis of titanium hydride, the particle size of the product was found dependent on the amount of hydrogen incorporated into the titanium such that the particle size of titanium hydride decreased with increasing hydrogen pressure and after-burn time. In the dehydrogenation process, as the dehydrogenation time increase, the particle size of titanium powder increased due to partial melting and sintering of titanium particles.

  • PDF

Separation and Sensitive Determination of Sb Species using Yeast Bonded Bio-column with Continuous Hydride Generation (이이스트 고정 bio칼럼을 이용한 Sb의 화학종분리 및 연속적 수소화물발생법에 의한 감도개선)

  • Lee, Jeong-Ok;Kwon, Hyo-Shik;Pak, Yong-Nam
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.696-700
    • /
    • 2010
  • Yeast is immobilized upon $100{\mu}m$ CPG(controlled pore glass bead) to separate $Sb^{3+}$ and $Sb^{5+}$. Continuous hydride generation is performed after the bio-column. The optimum conditions are 0.8 M nitric acid as an eluent with the flow rate of 1.0 mL $min^{-1}$ and the optimum conditions for the generation of hydride are 2 M HCl, 3% (w/v) $NaBH_4$ with the flow rate of 0.83 mL $min^{-1}$, Ar carrier gas flow rate of 50 mL $min^{-1}$. Two species are separated at 112 and 354 seconds each. The sensitivity is enhanced by 10 times for $200{\mu}L$ of sample and the detection limits are 3.0 ppb and 7.0 ppb for $Sb^{3+}$ and $Sb^{5+}$, respectively. When compared with the standard samples, this method showed accurate results.

Selective Reduction of Carbonyl Compounds with Lithium Borohydride, Borane, and Borane-Lithium Chloride (1 : 0.1) in Tetrahydrofuran (수소화붕소리튬, 보란 및 보란-염화리튬 (1 : 0.1)에 의한 카르보닐화합물의 선택환원)

  • Nung Min Yoon;Jin Soon Cha
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.259-267
    • /
    • 1978
  • In order to find out the selective reducing characteristics of lithium borohydride, borane, and borane-lithium chloride (1 : 0.1) in the reduction of carbonyl compounds, five representative equimolar mixtures of carbonyl compounds were chosen; benzaldehyde-acetophenone, benzaldehyde-2-heptanone, 2-heptanone-benzophenone, acetophenone-benzophenone, and 2-heptanone-acetophenone, and reacted with limited amount of lithium borohydride, borane or borane-lithium chloride (1 : 0.1) in tetrahydrofuran (THF) at $0^{\circ}$. Borane-lithium chloride (1 : 0.1) showed the excellent selectivity, however, lithium borohydride and borane also exhibited good selectivity except for the 2-heptanone-acetophenone.

  • PDF

Preparation of Metal Hydrides Using Chemical Synthesis and Hydriding Kinetics (화학적 합성법에 의한 금속수소화물의 제조 및 수소화 속도론적 연구)

  • Lee, Yun Sung;Oh, Jae Wan;Moon, Sung Sik;Nahm, Kee Suk
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.255-260
    • /
    • 1998
  • Metal hydrides, $LaNi_5$ and $LaNi_{4.5}Al_{0.5}$, were prepared using chemical synthetic method, and their physical properties were examined using various analytic techniques such as TGA, XRD, SEM and EDX. The activation of the chemically prepared $LaNi_5$ and $LaNi_{4.5}Al_{0.5}$ was achieved by two hydriding/dehydriding cycles only. The miasurements of P-C-T curves revealed that 6 and 5.5 hydrogen atoms were stored in LaNi5and $LaNi_{4.5}Al_{0.5}$, respectively. The hydriding reaction rated for $LaNi_{4.5}Al_{0.5}$ were measured by the method of initial rates. It was found that the shrinking unreacted core model could be applied for the analysis of hydriding kinetics of $LaNi_5$. The rate controlling step of this reaction was the dissociative chemisorption of hydrogen molecules on the surface of $LaNi_5$. The activation energy was $9.506kcal/mol-H_2$. The rates measured in the temperature range from 273 to 343K and in pressure difference ($P_o-P_{eq}$) range form 0.25 to 0.66atm could be expressed as the following equation ; $\frac{dX}{dt}=4.636(P_o-P_{eq})$ exp($\frac{-9506}{RT}$).

  • PDF

Material Life Cycle Assessments on Mg2NiHx-CaO Composites (Mg2NiHx-CaO 수소 저장 복합물질의 물질 전과정 평가)

  • HWANG, JUNE-HYEON;SHIN, HYO-WON;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.1
    • /
    • pp.8-18
    • /
    • 2022
  • With rapid industrialization and population growth, fossil fuel use has increased, which has a significant impact on the environment. Hydrogen does not cause contamination in the energy production process, so it seems to be a solution, but it is essential to find an appropriate storage method due to its low efficiency. In this study, Mg-based alloys capable of ensuring safety and high volume and hydrogen storage density per weight was studied, and Mg2NiHx synthesized with Ni capable of improving hydrogenation kinetics. In addition, in order to improve thermal stability, a hydrogen storage composite material synthesized with CaO was synthesized to analyze the change in hydrogenation reaction. In order to analyze the changes in the metallurgical properties of the materials through the process, XRD, SEM, BET, etc. were conducted, and hydrogenation behavior was confirmed by TGA and hydrogenation kinetics analysis. In addition, in order to evaluate the impact of the process on the environment, the environmental impact was evaluated through "Material Life Cycle Assessments" based on CML 2001 and EI99' methodologies, and compared and analyzed with previous studies. As a result, the synthesis of CaO caused additional power consumption, which had a significant impact on global warming, and further research is required to improve this.

Solid Chemical Hydride-Based Hydrogen Ignition System for Aluminum Powder Combustion (알루미늄 분말 연소를 위한 고체 화학수소화물 기반 수소 점화 시스템)

  • Park, Kilsu;Kim, Taegyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.88-95
    • /
    • 2019
  • The hydrogen torch ignition system has been widely used to ignite a pure aluminum for aluminum powder combustion system because of its simple ignition method. However, the conventional hydrogen torch ignition system has a disadvantage that requires a high-pressure tank to supply hydrogen, which leads to the increase of the weight. In order to solve this problem, a hydrogen ignition system using $NaBH_4$, a solid chemical hydride, was designed in this study. The thermal decomposition of $NaBH_4$ was initiated approximately at $500^{\circ}C$ and hydrogen was generated. The parameters affecting the thermal decomposition characteristics of $NaBH_4$ were analyzed and the aluminum combustion test was carried out using $NaBH_4$-based hydrogen ignition system to study the applicability to a practical aluminum-combustion propulsion system.