• Title/Summary/Keyword: 화학 결합

Search Result 2,280, Processing Time 0.031 seconds

Changes of Chemical Bond in Woody Charcoal from Different Carbonization Temperatures (목질탄화물 내의 화학 결합 변화)

  • Jo, Tae-Su;Lee, Oh-Kyu;Choi, Joon-Weon;Cho, Sung-Taig;Kim, Suk-Kuwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.87-93
    • /
    • 2009
  • Properties and chemical bonding of wood charcoal were investigated to understand the chemistry occurring in wood carbonization. From the pH changes of wood charcoal, it is revealed that it becomes acidic to weakly basic for charcoal carbonized at about $300^{\circ}C$, whereas it turns to basic at higher carbonization temperature higher than $600^{\circ}C$. Also, the ratio of carbon atoms in the charcoal was increased with increasing the carbonization temperature, while those of oxygen and hydrogen atoms. This tendency was significant when the carbonization temperature was increased up to $600^{\circ}C$ and the ratio changes of the atoms became stable at above $600^{\circ}C$. In the changes of chemical bonding, the ratio of C-C bonding was increased and those of C-O-H and C-O-R bonding was decreased significantly. It is considered that bondings connected to oxygen atoms tends to be broken, and the ratio of C-C bonding increased. Consequently, it is expected that this change may causes occurrence of new functional groups. In addition to that, it seems to be that the chemical bondings undergo the partial decomposition, formation, and recombination steps, Because ratio of C=O bonding tended to be increased or decreased by increasing the carbonization temperature. This understanding of chemical bond changes in charcoal can be a compensative consideration on the knowledges made only by physical parameters in the properties of micro-pore which has limited to explain the phenomenon. Also, it is considered that this can be treated as a basic knowledge for upgrading and development of use of wood charcoal.

Effect of Soil Organic Matter on Arsenic Adsorption in the Hematite-Water Interface: Chemical Speciation Modeling and Adsorption Mechanism (비소의 적철석 표면 흡착에 토양유기물이 미치는 영향: 화학종 모델링과 흡착 기작)

  • Ko, Il-Won;Kim, Ju-Yong;Kim, Gyeong-Ung;An, Ju-Seong;Davis, A. P.
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • This study was performed to investigate the effect of humic acid on the adsorption of arsenic onto hematite and its binding mechanism through the chemical speciation modeling in the binary system and the adsorption modeling in the ternary system. The complexation modeling of arsenic and humic acid was suitable for the binding model with the basis of the electrostatic repulsion and the effect of bridging metal. In comparison with the experimental adsorption data in the ternary system, the competitive adsorption model from the binary intrinsic equilibrium constants was consistent with the amount of arsenic adsorption. However, the additive rule showed the deviation of model in the opposite way of cationic heavy metals, because the reduced organic complexation of arsenic and the enhanced oxyanionic competition diminished the adsorption of arsenic. In terms of the reaction mechanism, the organic complex of arsenic, neutral As(III) and oxyanionic As(V) species were transported and adsorbed competitively to the hematite surface forming the inner-sphere complex in the presence of humic acid.

Studies on the Catalytic Effects of Organic Compounds by Polymer-bonded Metalloporphyrins (고분자 결합 Metalloporphyrin을 이용한 유기물질의 산화촉매에 대한 연구)

  • Lee Sung-Ju;Paeng Ki-Jung;Whang Kyu-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.744-752
    • /
    • 1992
  • Polymer bonded metalloporphyrins are synthesized by reaction between Fe(III) protoporphyrin or Mn(II) tetrakis(4-N-carboxyphenyl)porphyrin with polystyrene divinylbenzene copolymer. The spectroscopic properties of synthetic polymer bonded metalloporphyrins are investigated by using resonance Raman spectrometer. By synthetic polymer bonded metalloporphyrins as catalyst, which are model of cytochrome P-450 and peroxidases, epoxidation of olefins and oxidation of alkanes are achieved with H2O2 as oxidant. The catalytic efficiencies with polymer bonded metalloporphyrins are improved on that with corresponding nonpolymer bonded metalloporphyrins. Especially those can be reused because of stability against oxidant. Electron donating imidazole derivatives, which are attached in 5th position of central metal of metalloporphyrins, enhance the catalytic efficiencies.

  • PDF

Effects of Additive Binder Contents on Electrode Properties of Carbon Anode for Fluorine Electrolysis (불소전해용 양극탄소전극의 전극특성에 미치는 첨가 결합제의 영향)

  • Ahn, Hong Joo;Oh, Han Jun;Chi, Choong Soo;Kim, Young Cheul;Ko, Young Shin
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.413-421
    • /
    • 2001
  • The carbon electrodes for fluorine electrolysis were prepared from petroleum cokes containing coal tar pitch as binder and the effects of binder contents on electrode properties were investigated. The evaluations were performed by cyclic voltammogram in the 0.5 M $K_2SO_4$ solution with 1 mM $[Fe$(CN)_6$]^{3-}$/$[Fe$(CN)_6$]^{4-}$redox couple, mechanical strength, and electrochemical behaviour in molten $KF{\cdot}2HF$ electrolyte. It was revealed that the carbon anode formed with 40wt% of coal tar pitch as binder has a better electrode properties compared to those of the other carbon anode, which led to the increase in the effective internal surface area due to proper size and distribution of pores on carbon anode.

  • PDF

The Effects of the Structural Characteristics on Properties of Their Bridging OH Groups for $AlPO_4-5$ Molecular Sieve : MNDO Calculations ($AlPO_4-5$ 분자체에서 가교 OH 그룹의 성질에 대한 구조 특성 효과 : MNDO 계산)

  • Son, Man-Shick;Lee, Chong-Kwang;Paek, U-Hyon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.9
    • /
    • pp.787-792
    • /
    • 1993
  • Semiempirical MNDO calculations are employed to study relation properties on bridging OH group with Al-O(P-O) bond length and Al-O-P bond angle of structural characteristics using birdging $(OH)_3AlOP(OH)_3$ and $(OH)_3AlOHP(OH)_3^+$ model culster. We know that the O-H bond dissociation energy of bridging OH group is increased with increasing Al-O(P-O) bond length and decreasing Al-O-P bond angle. The bridging OH group is formed into enlarged Al-O(P-O) bond length and shortened Al-O-P bond angle in bridging oxygen atom by a hydrogen migration. The negative net charge of bridging oxygen atom is increased with longer Al-O-P bond angle, while the positive net charge is decreased with longer Al-O-P bond angle.

  • PDF

Electrochemical Polymerization of Conducting PVC-g-Poly(methyl aniline) Copolymer and Properties (전기화학 중합에 의한 전도성 PVC-g-Poly(methyl aniline) 공중합체의 합성 및 성질)

  • 조현석;박연흠;박종민
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.355-358
    • /
    • 2002
  • 고분자가 절연재료로서 사용되는 이유는 전기를 통하지 않는 절연특성을 지니고 있기 때문이며 이러한 성질은 고분자가 금속재료와 구별되는 가장 큰 특징이다. 그러나 1964년 W. A. Little 이 발표한 공액 이중결합구조를 가진 화합물은 전도성 고분자가 될 수 있다는 가설을 바탕으로 전도성 고분자에 관한 많은 연구가 진행 중에 있다. 전도성 고분자는 절연체로서의 응용에만 한정되어왔던 기존 고분자물질들과 달리 가볍고 저렴하며 단일결합과 이중결합을 교대로 하고 있는 공액 고분자 구조를 가지고 있어 다양한 화학적 합성방법에 의해 전기전도도, 유전상수, 결정 등의 물리적 성질을 조절할 수 있으며, 금속의 전기적, 자기적, 광학적 특성과 고분자의 기계적 성질을 동시에 가지므로 배터리, 축전기, 트랜지스터, 광전소자, 전자파 차폐제 등 플라스틱 전자소재의 실용적으로 인해 산업체에서도 높은 관심의 대상이다. (중략)

  • PDF

AES and XPS Analysis of GaAs Surfaces Sulfurized by $H_2S$ Gas ($H_2S$ 가스로 유황처리된 GaAs 표면의 AES 및 XPS 분석)

  • 신장규;이동근;김항규
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.3
    • /
    • pp.264-268
    • /
    • 1994
  • 본연구에서는 HCl 또는 NH4OH로 산화막을 식각학 GaAs 표면에 H2S 가스를 이용하여 유황처 리하였다. 표면의 화학적 조성 및 결합상태를 측정하기 위하여 AES 및 XPS를 사용하였다. 시편들은 30,200 및 $350^{\circ}C$로 가열하면서 H2S가스와 반응시켰다. 이때 유황은 GaAs 표면의 Ga 원자 및 As 원자 와 화학결합을 형성하고 있음이 밝혀졌다. 또한 $350^{\circ}C$로 가열된 시편이 $30^{\circ}C$ 또는 $200^{\circ}C$로 가열된 시편 보다 표면에 결합된 유황의 양이 많은 것으로 나타났다. 아울러 (NH4)2S 수용액 또는 Na2S 수용액으로 유황처리된 경우와 동일하게 H2S 가스로 유황처리된 GaAs 표면에서는 Ga 산화막 및 As 산화막이 거 의 관측되지 않았다.

  • PDF

Electrochemical kinetic analysis of the carbon paste enzyme electrode bound with butyl rubber (부틸고무로 결합된 탄소반죽 효소전극의 전기화학 속도론적 고찰)

  • Rhyu, Keun-Bae;Yoon, Kil-Joong
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.113-118
    • /
    • 2011
  • When butyl rubber dissolved in toluene was used as a binder of carbon powder, carbon paste showed a mechanical hardness due to the fast volatility of the solvent just after the electrode fabrication. With a view of validating its quantitative electrochemical behaviors, its kinetic parameters, e.g. the symmetry factor, the exchange current density, the capacity of the double layer, the Michaelis constant, the time constant and other factors were investigated. Our experimental facts indicated that butyl rubber is available for a promising binder of carbon powder.

The Predicting Environmental Fate of Cd, Cu, and Pb by Sequential Fractionation in Mine Tailings and Agricultural Soils

  • Lee, Do-Kyoung;Chung, Doug-Young;Park, Mi-Sun;Lee, Seung-Kil
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.195-200
    • /
    • 1998
  • 토양내에 있어 중금속의 총량 분석만으로는 오염 토양에 대한 환경 평가를 위한 충분한 자료가 되지 못한다. 또한 중금속의 토양내 위해성은 중금속과 토양과의 화학적 상호작용에 의해 결정되기 때문에 중금속의 화학적 형태를 규명하는 것은 토양 환경에 있어서 그들의 이동성과 거동 특성을 평가하는데 중요한 자료가 된다. 연속 추출법은 구봉 광산의 광미로 부터 Cd, Cu, Pb을 화학적 형태에 따라 분리하고, 인위적으로 중금속을 포화시킨 광미와 두밭토양에 있어 중금속의 토양내 거동 특성을 예측하기 위하여 이용되었다. 광미중 Pb의 대부분은 Fe-Mn oxide, carbonate의 결합 형태로 존재하였으며, Cu와 Cd은 각각 71.8%와 42.9%가 유기물, carbonate의 결합형태로 존재하였다. 상당량의 Cd(94.9%), Cu(95.1%), 그리고 Pb(85.8%)은 토양내 잠재적으로 이동 가능한 형태로 존재하였다. 유성과 논산의 밭토양 에 가해진 Cd는 대부분 이동성이 가장 높은 치환태로 존재하였으며, 유성과 논산 토양에서 각각 67.9%와 93.2%가 치환태로 존재하였다. 토양에 가해진 Cd, Cu, Pb은 대부분 이동이 용이한 형태로 존재하였으며, 토양과의 결합세기는 Pb > Cu > Cd 순으로 감소하였다.

  • PDF

Physical Properties of Insulating Composite Materials Using Natural Cellulose and Porous Ceramic Balls as a Core Materials (천연섬유질과 다공성 세라믹볼을 심재로 사용한 복합단열재의 물성)

  • Hwang, Eui-Hwan;Cho, Soung-Jun;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.501-507
    • /
    • 2011
  • To develop environmental-friendly insulating composite materials, natural cellulose and porous ceramic balls were used as core materials and activated Hwangtoh was used as a binder. Various specimens were prepared with different water/binder ratios and core material/binder ratios. The physical properties of these specimens were then investigated through compressive strengths, flexural strengths, absorption test, hot water resistance test, pore analysis, thermal conductivity, and observation of micro-structures using scanning electron microscope. Results showed that the maximum compressive strength varied appreciably with the water/binder ratios and core material/binder ratios, but the flexural strength increased with the core material/binder ratios regardless of water/binder ratios. The compressive strength and the flexural strength measured after the hot water resistance test decreased remarkably compared to those measured before test. The pore analysis measured after the hot water resistance test showed that total pore volume, porosity and average pore diameter decreased, while bulk density increased by the acceleration of hydration reaction of binder in the hot water. The thermal conductivity decreased gradually with an increase of core material/binder ratios. It can be evaluated that the composite insulation materials having good insulating properties and mechanical strengths can be used in the field.