• Title/Summary/Keyword: 화학물질 운송 중 사고 및 누출

Search Result 10, Processing Time 0.021 seconds

Study of Emergency Response System Measures for Chemical Transport Vehicle Accidents (화학물질 운송차량 사고에 따른 비상 대응체계 방안 연구)

  • Moon, Byoung-Chan
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.247-248
    • /
    • 2022
  • 화학물질의 운송 중 사고 및 누출에 대한 국민의 관심이 높아지고 있으며, 사고시 피해를 최소화하기 위해서 신속하게 사고 전파 및 대응, 누출 발생 시에 관청과 제조사, 운송사의 비상 대응체계를 효과적으로 운용하기 위해서 검토해야 할 사항들에 대해 알아보고자 한다.

  • PDF

Statistical Analysis of Chemical Substance Transporting Accidents (화학물질 운송 화학사고의 통계 특성 분석에 관한 연구)

  • Lee, Tae-Hyung;Lee, Sang-Jae;Shin, Chang-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.23-30
    • /
    • 2016
  • This study analyzed the characteristics of chemical accidents, including the accidents occurring each year according to status, type of accident, accident cause for chemical substance transporting accidents. The major aim of this study was to provide information on the chemical accidents that occurred involving chemical substance transporting accidents from 2013 to July - 2016. The total incidence of chemical transporting accidents was 77 cases; 74 cases occurred by the spill & leakage type. The main cause of the accidents analyzed was traffic accidents (41 cases). Forty-six accidents were related to hazardous chemical substances. Among the 46 hazardous chemical substances involved in transporting chemical accidents, 46% of the accident substances were hydrogen chloride. For the prevention and response to accidents occurring during the transportation of chemicals, it is necessary to complement the precautions for chemical accidents caused by transportation accidents and chemical spills and leaks of chemicals. In addition, when the chemical transport of an accident occurs, it is necessary to apply a chemical transport safety system for chemical transfer.

Research on Rapid Disaster Prevention Measures in Case of Chemical Transport Vehicle Accidents (화학물질 운송차량 사고 시 신속방재방안 연구)

  • Moon, Byoung-Chan
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.119-120
    • /
    • 2023
  • 유해화학물질의 제조, 취급사업장의 화학사고에 대한 대응에는 어느 정도 체계적으로 이루어 지고 있으나 유해화학물질의 운송 중 설비결함이나 교통사고에 의한 폭발, 누출사고는 장소 및 시간등이 확정되지 않고 다양한 변수로 인하여 정부기관의 신속한 대응에는 많은 어려움이 따르고 있다. 다양한 변수들을 고려한 화학사고 업무대응 매뉴얼이 부족하고 현장지휘체계의 신속한 구성과 협업에 의한 비상대응체계를 구축하여 운영하는데 현실적으로 많은 어려움이 있어 이에 대해서 효과적으로 대응하는 방안을 수립하기 위해 검토해야 할 사항들에 대해 알아보고자 한다.

  • PDF

Research on Rapid Disaster Prevention Measures due to Leakage During Transport of Hydrochloric Acid Tank Lorry (염산 탱크로리 운송 중 누출에 따른 신속 방재방안 연구)

  • Byoung-chan Moon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.213-221
    • /
    • 2024
  • Purpose: The purpose is to find the optimal way to quickly block the leak in the event of a leak accident in a tank lorry transporting hydrochloric acid aqueous solution, a hazardous chemical, and to carry out effective disaster prevention work to minimize damage caused by the leak. Method: We organized the overall characteristics of hydrochloric acid and accidents that occurred during transportation by accident type and cause, and created a small tank that can be tested assuming a leak situation in a hydrochloric acid tanker, creating an environment similar to the leak situation, and leaking in various ways. I would like to experiment and organize blocking methods. Result: Through experiments, an effective leak blocking method was confirmed. We would like to summarize measures to quickly block a leak in the event of a leak and present the optimal disaster prevention plan that can be applied at the accident site. Conclusion: It has been confirmed that using a combination of adhesive tape and magnets is more effective in blocking leaks. Rapid response is possible by repeatedly training business emergency response teams and product transporters to appropriately select and respond to leak-blocking equipment. Additional research on various leak prevention methods is needed in the future.

Analysis on the Characteristics of Hazardous Chemical Transport Vehicle Accidents in Korea (국내 유해화학물질 운송차량사고 특성분석)

  • Jeong, Jae-uk;Lee, Sang-jae
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.310-317
    • /
    • 2020
  • Purpose: In this study, the characteristics of hazardous chemical transport vehicle accidents during the last six years from 2014 to 2019 was analyzed. This study is to prevent chemical transport accidents. Method: Using statistics from the Ministry of Environment, chemical transport vehicle accidents were classified into accident type, accident cause and vehicle type. Result: Of the total 506 cases chemical accidents, 105 cases were caused by transport vehicle. More than 20 percent of total accidents were reported. Most of the accidents were caused by spill·leak. The main causes of the accident were traffic accidents(49 cases) and management negligence(29 cases). This was more than 74% of all transport vehicle accidents. By vehicle type, 57 cases(54%) were most common in tank lorries, followed by trucks (39 cases, 37%) and trailers (9 cases, 9%). Conclusion: In order to prevent accident of transport vehicle, thorough inspection of the transport vehicle is required and safe operation of the driver. In addition, the government needs to expand real-time monitoring of transport vehicles and comprehensively manage different systems by the relevant ministries.

Hazard Assessment on Chlorine Distribution Use of Chemical Transportation Risk Index (화학물질 운송위험지수를 활용한 염소(Chlorine) 유통 위해성 평가)

  • Kim, Jeong Gon;Byun, Hun Soo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.755-767
    • /
    • 2014
  • Chlorine is one of the most produced and most used non-flammable chemical substances in the world even though its toxicity and high reactivity cause the ozone layer depletion. However, in modern life, it is impossible to live a good life without using Chlorine and its derivatives since they are being used as an typical ingredient in more than 40 percent of the manufactured goods including medicines, detergents, deodorant, fungicides, herbicides, insecticides, and plastic, etc. Even if Chlorine has been handled and distributed in various business (small and medium-sized businesses, water purification plants, distribution company, etc.), there have been few researches about its possible health hazard and transportation risks. Accordingly, the purpose of this paper is to make a detailed assessment of Chlorine-related risks and to model an index of chemicals transportation risks that is adequate for domestic circumstances. The assessment of possible health hazard and transportation risks was made on 13 kinds of hazardous chemicals, including liquid chlorine. This research may be contributed to standardizing the risk assessment of Chlorine and other hazardous chemicals by using an index of transportation risks.

A Study on the Development of Calculation Tables and Formulas for Determining Separation Distance in Case of Cl2・HF Tank-lorry Leakage (염소・불화수소 탱크로리 누출사고 시 이격거리 산정을 위한 산정표 및 산정식 개발 연구)

  • Jeon, Byeong-Han;Kim, Hyun-Sub;Lim, Sang-Min;Lee, Joo-Chan;Lee, Gang-San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.212-219
    • /
    • 2021
  • Chemical accidents caused by transport vehicles account for 20% of all chemical accidents every year, but there are difficulties in the accident-response process due to repeated situations where the impact assessment information is unknown. In this study, we developed a calculation table and formula for predicting the range of damage for chlorine and hydrogen fluoride, which have a high domestic usage, high risk of accidents, and high accident frequency in the last 7 years. The calculation table is based on the leakage rate, wind speed, and temperature, and the calculation formula was derived using R software for special situations where it is difficult to apply the calculation table. The calculation table and formula could be used on site by related organizations to obtain important information for decision making, which could help in minimizing damage from chemical accidents, setting separation distances, and deciding to evacuate residents.

Prediction of Damages and Evacuation Strategies for Gas Leaks from Chlorine Transport Vehicles (염소 운송차량 가스누출시 피해예측 및 대피방안)

  • Yang, Yong-Ho;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.407-417
    • /
    • 2024
  • The objective of this study is to predict and reduce potential damage caused by chlorine gas leaks, a hazardous material, when vehicles transporting it overturn due to accidents or other incidents. The goal is to forecast the anticipated damages caused by chlorine toxicity levels (ppm) and to design effective response strategies for mitigating them. To predict potential damages, we conducted quantitative assessments using the ALOHA program to calculate the toxic effects (ppm) and damage distances resulting from chlorine leaks, taking into account potential negligence of drivers during transportation. The extent of damage from toxic gas leaks is influenced by various factors, including the amount of the leaked hazardous material and the meteorological conditions at the time of the leak. Therefore, a comprehensive analysis of damage distances was conducted by examining various scenarios that involved variations in the amount of leakage and weather conditions. Under intermediate conditions (leakage quantity: 5 tons, wind speed: 3 m/s, atmospheric stability: D), the estimated distance for exceeding the AEGL-2 level of 2 ppm was calculated to be 9 km. This concentration poses a high risk of respiratory disturbance and potential human casualties, comparable to the toxicity of hydrogen chloride. In particular, leaks in urban areas can lead to significant loss of life. In the event of a leakage incident, we proposed a plan to minimize damage by implementing appropriate response strategies based on the location and amount of the leak when an accident occurs.

Process Hazard Review and Consequence Effect Analysis for the Release of Chlorine Gas from Its Storage Tank (염소저장탱크에서의 가스 누출시 공정위험검토 및 결과영향분석)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.61-73
    • /
    • 2003
  • Most of the accidents occurred from the chemical plants are related to the catastrophic gas release events when the large amount of toxic materials is leaked from its storage tank or transmitting pipe lines. In this case, the greatest concerns are how the spreading behaviors of leakages are depended on the ambient conditions such as air stability and other environmental factors. Hence, we have focused on the risk assessments and consequential analysis for chlorine as an illustrative example. As appeared in the result, Fire & Explosion Index depicted it a bit dangerous with presenting the comprehensive degrees of hazard 90.7. And as a result of Phast6.0/ALOHA, the trends of each scenario appeared considerably identical although there are some differences in the resulting effects according to the input data for the Gas Model. The consequence analysis is performed numerically based on the dense gas mode. In the future, using more correct input data, material properties, and topographical configuration, the method of this research will be useful for the guideline of the risk assessment when the release of toxicants breaks out.

Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank (최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석)

  • Ko, JaeSun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.