• Title/Summary/Keyword: 화학구조 분석

Search Result 2,348, Processing Time 0.036 seconds

Distribution characteristics and community structure of picophytoplankton in the northern East China Sea in 2016-2017 (2016~2017년 동중국해 북부해역의 초미소식물플랑크톤 분포 특성)

  • Park, Kyung Woo;Yoo, Man Ho;Oh, Hyun Ju;Youn, Seok Hyun;Kwon, Kee Young;Moon, Chang Ho
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.93-108
    • /
    • 2019
  • To investigate the temporal-spatial distribution of picophytoplankton in relation to different water masses in the northern East China Sea (ECS), picophytoplankton abundance were investigated using flow cytometry with environmental factors in 2016-2017. The results from the analysis of flow cytometer data showed that Synechococcus appeared across all seasons, exhibiting its minimum abundance in winter and maximum abundance in summer. Furthermore, high abundance was detected in the surface mixed layer during spring and summer when vertical stratification occurs; in particular, Synechococcus exhibited maximum abundance in thermocline layer, indicating a close correlation to water temperature and thermocline formation. In addition, the abundance of Synechococcus indicated a decrease in the western seas in 2017 compared to 2016 under the strong influence of the Changjiang Diluted Water (CDW). This was determined by the significant influence of the CDW on the abundance of Synechococcus during summer in the northern waters of the ECS. In contrast, Prochlorococcus did not appear during winter and spring, and its distribution was limited during summer and autumn in the eastern seas under the influence of the Kuroshio current. The largest range of Prochlorococcus distribution was confirmed during autumn without the influence of the CDW. Thus, the distribution pattern of each picophytoplankton genus was found to be changing in accordance to the extension and reduction of sea current in different seasons and periods of time. This is anticipated to be a useful biological marker in understanding the distribution of sea currents and their influence in the northern waters of the ECS.

Study on water quality prediction in water treatment plants using AI techniques (AI 기법을 활용한 정수장 수질예측에 관한 연구)

  • Lee, Seungmin;Kang, Yujin;Song, Jinwoo;Kim, Juhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.151-164
    • /
    • 2024
  • In water treatment plants supplying potable water, the management of chlorine concentration in water treatment processes involving pre-chlorination or intermediate chlorination requires process control. To address this, research has been conducted on water quality prediction techniques utilizing AI technology. This study developed an AI-based predictive model for automating the process control of chlorine disinfection, targeting the prediction of residual chlorine concentration downstream of sedimentation basins in water treatment processes. The AI-based model, which learns from past water quality observation data to predict future water quality, offers a simpler and more efficient approach compared to complex physicochemical and biological water quality models. The model was tested by predicting the residual chlorine concentration downstream of the sedimentation basins at Plant, using multiple regression models and AI-based models like Random Forest and LSTM, and the results were compared. For optimal prediction of residual chlorine concentration, the input-output structure of the AI model included the residual chlorine concentration upstream of the sedimentation basin, turbidity, pH, water temperature, electrical conductivity, inflow of raw water, alkalinity, NH3, etc. as independent variables, and the desired residual chlorine concentration of the effluent from the sedimentation basin as the dependent variable. The independent variables were selected from observable data at the water treatment plant, which are influential on the residual chlorine concentration downstream of the sedimentation basin. The analysis showed that, for Plant, the model based on Random Forest had the lowest error compared to multiple regression models, neural network models, model trees, and other Random Forest models. The optimal predicted residual chlorine concentration downstream of the sedimentation basin presented in this study is expected to enable real-time control of chlorine dosing in previous treatment stages, thereby enhancing water treatment efficiency and reducing chemical costs.

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.

Oestrogenic Activity of Parabens In Vitro Estrogen Assays (에틸, 프로필, 이소프로필, 부틸, 이소부틸 파라벤의 In Vitro 검색시험 연구에서의 내분비독성)

  • Lee Sung-Hoon;Kim Sun-Jung;Park Jung-Ran;Jo Eun-Hye;Ahn Nam-Shik;Park Joon-Suk;Hwang Jae-Woong;Jung Ji-Youn;Lee Yong-Soon;Kang Kyung-Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.2
    • /
    • pp.100-106
    • /
    • 2006
  • The use of underarm and body care cosmetics with oestrogenic chemical excipients (particularly the parabens) and the hypothesized association with breast cancer incidence, particularly in women. It is noted that the type of cosmetic product is irrelevant (e.g. antiperspirant/deodorant versus body lotion, moisturizers or sprays versus creams) and attention must focus on issues of actual exposure to chemicals through continued dermal application of body care products and the endocrine/hormonal activity and toxicity of the chemicals in the formulations. To evaluate the estrogenic activities of parabens such as ethylparaben, butylparaben, propylparaben, isobutylparaben and isopropylparaben, we used recombinant yeasts containing the human estrogen receptor [Saccharomyces cerevisiae ER+LYS 8127], human breast cancer MCF-7 cell lines and human estrogen receptor ${\alpha}\;and\;{\beta}$. In E-screen assays, isopropylparaben is the most estrogenic paraben, and in ER competition assay, isobutylparaben is the most estrogenic paraben. We evaluated isopropylparaben was most active in the recombinant yeast assay, followed by propylparaben, ethylparaben, isobutylparaben and butylparaben. Results from this study demonstrate that parabens are observed in human endocrine system. Therefore, we have shown that the parabens is induced the estrogenic activities similar to $17{\beta}$-estradiol and Bisphenol-A.

Synthesis of LSX Zeolite and Characterization for Nitrogen Adsorption (LSX 제올라이트의 합성 및 질소 흡착 특성)

  • Hong, Seung Tae;Lee, Jung-Woon;Hong, Hyung Phyo;Yoo, Seung-Joon;Lim, Jong Sung;Yoo, Ki-Pung;Park, Hyung Sang
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.160-165
    • /
    • 2007
  • The synthesis and the characterization of Low Silica X (LSX) zeolite for nitrogen adsorption have been studied. The performance of LSX zeolite for nitrogen adsorption was compared to that of the commercial zeolite. The $Na_2O/(Na_2O+K_2O)$ ratio in the gel and the crystallization time were fixed as the synthetic factor. The LSX zeolite was formed at the $Na_2O/(Na_2O+K_2O)$ ratio of 0.75. The formation of LSX zeolite was confirmed by XRD and SEM. The Si/Al ratio was investigated by using XRF and FT-IR. The synthesized LSX zeolite showed a lower Si/Al ratio than the NaY and NaX zeolites although they have a same faujasite structure. The Si/Al ratio of the LSX zeolite converged close to 1. 1A (Li, Na, K) and 2A (Mg, Ca, Ba) group elements were ion-exchanged to the LSX zeolite. As the charge density of cation rises, the amount of nitrogen adsorbed increased. $Li^+$ ion-exchanged LSX zeolite showed the highest nitrogen adsorption weight. When the Li/Al ratio was over 0.65, nitrogen adsorption increased remarkably. $Li^+$ ions located on the supercage (site III, III') in the LSX zeolite played a role as nitrogen adsorption sites. When the $Ca^{2+}$ ions were added to the LiLSX zeolite by ion-exchange method, the performance for nitrogen adsorption increased more. The performance for the nitrogen adsorption was the highest at the Ca/Al ratio of 0.26. Nitrogen adsorption capacity of LiCaLSX (Ca/Al=0.26) zeolite was superior to the commercial NaX zeolite.

Transport Properties of CO2 and CH4 using Poly(ether-block-amide)/GPTMS Hybird Membranes (Poly(ether-block-amide)/GPTMS 하이브리드 분리막을 이용한 이산화탄소와 메탄의 투과특성)

  • Lee, Keun Chul;Kim, Hyunjoon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.653-658
    • /
    • 2016
  • Poly(ether-block-amide)(PEBAX$_{(R)}$) resin is a thermoplastic elastomer combining linear chains of hard-rigid polyamide block interspaced soft-flexible polyether block. It was believed that the hard polyamide block provides the mechanical strength and permselectivity, whereas gas transport occurs primarily through the soft polyether block. The objective of this work was to investigate the gas permeation properties of carbon dioxide and methane for PEBAX$^{(R)}$-1657 membrane, and compare with those obtained for other grade of pure PEBAX$^{(R)}$, PEBAX$^{(R)}$-2533 and PEBAX$^{(R)}$ based hybrid membranes. The hybrid membranes based PEBAX$^{(R)}$ were obtained by a sol-gel process using GPTMS ((3-glycidoxypropyl) trimethoxysilane) as the only inorganic precursor. Molecular structure and morphology of membrane were analyzed by $^{29}Si$-NMR, DSC and SEM. PEBAX$_{(R)}$-2533 membrane exhibited higher gas permeability coefficients than PEBAX$^{(R)}$-1657 membrane. This was explained by the increase of chain mobility. In contrast, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$-1657 membrane was higher than PEBAX$^{(R)}$-2533 membrane. It was explained by the decrease of diffusion selectivity caused by increase of chain mobility. For PEBAX$^{(R)}$/GPTMS hybrid membrane, gas permeability coefficients were decreased with reaction time. Gas permeability coefficient of $CH_4$ was more significantly decreased than $CO_2$. It can be explained by the reduction of chain mobility caused by the sol-gel process, and strong affinity of PEO segment with $CO_2$. Comparing with pure PEBAX$^{(R)}$-1657 membrane, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$/GPTMS hybrid membrane has decreased to 4.5%, and gas permeability coefficient of $CO_2$ has increased 3.5 times.

Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA (미국 네브라스카의 관개된 옥수수 농업생태계의 복사, 에너지 및 엔트로피의 교환)

  • Yang, Hyunyoung;Indriwati, Yohana Maria;Suyker, Andrew E.;Lee, Jihye;Lee, Kyung-do;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.26-46
    • /
    • 2020
  • An irrigated-maize agroecosystem is viewed as an open thermodynamic system upon which solar radiation impresses a large gradient that moves the system away from equilibrium. Following the imperative of the second law of thermodynamics, such agroecosystem resists and reduces the externally applied gradient by using all means of this nature-human coupled system acting together as a nonequilibrium dissipative process. The ultimate purpose of our study is to test this hypothesis by examining the energetics of agroecosystem growth and development. As a first step toward this test, we employed the eddy covariance flux data from 2003 to 2014 at the AmeriFlux NE1 irrigated-maize site at Mead, Nebraska, USA, and analyzed the energetics of this agroecosystem by scrutinizing its radiation, energy and entropy exchange. Our results showed: (1) more energy capture during growing season than non-growing season, and increasing energy capture through growing season until senescence; (2) more energy flow activity within and through the system, providing greater potential for degradation; (3) higher efficiency in terms of carbon uptake and water use through growing season until senescence; and (4) the resulting energy degradation occurred at the expense of increasing net entropy accumulation within the system as well as net entropy transfer out to the surrounding environment. Under the drought conditions in 2012, the increased entropy production within the system was accompanied by the enhanced entropy transfer out of the system, resulting in insignificant net entropy change. Drought mitigation with more frequent irrigation shifted the main route of entropy transfer from sensible to latent heat fluxes, yielding the production and carbon uptake exceeding the 12-year mean values at the cost of less efficient use of water and light.

The Antimicrobial Effect of Water Soluble Chitosan (수용성 키토산의 항균효과)

  • Jung, Byung-Ok;Lee, Young-Moo;Kim, Jae-Jin;Choi, Young-Ju;Jung, Kyung-Ja;Kim, Je-Jung;Chung, Suk-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.660-665
    • /
    • 1999
  • Structure of water soluble chitosan (WSC) was confirmed by Fourier transform infrared spectrometer (FT-IR), X-ray diffractometer and thermal analyser. The viscosity average molecular weight of WSC ranged from $3.0{\times}10^{4}$ to $4.5{\times}10^{4}$. Using the WSC having viscosity average molecular weight of $3.0{\times}10^{4}$, the antimicrobacterial effects against microorganism and oral microorganism showed 81.7% and 80.6% for Staphyloccus aureus and Bacillus subtilis, respectively, while the anitmicrobacterial effect exhibited 100% and 73.8% against Streptococcus mutans and Streptococcus sanguis, respectively. Therefore it is concluded that WSC is more effective against oral microorganism that microorganism in terms of antimicrobacterial effects. WSC sample with the viscosity average molecular weight of $4.5{\times}10^{4}$ exhibited a half of the antimicrobacterial effect of the low MW sample, indicating that the WSC with low MW was better than that with high MW. Chitin and chitosan showed a drastic decrease of acidity from pH 7.0 to 4.9 after 8 minute incubation time and reached an equilibrium after that. WSC, however, restrained pH of the sample from lowering up to about 16 minutes of incubation and reached an equilibrium after that. WSC obviously showed a buffering effect against pH change.

  • PDF

Growth and Morphological Characteristics of Introduced Sorghum Germplasm (도입 수수 유전자원의 생육 및 형태적 특성)

  • 강정훈;이호진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.207-214
    • /
    • 1996
  • This study was conducted to obtain fundamental information on forage sorghum breeding in forage crop field of Livestock Experiment Station at Suwon from 1986 to 1991. The charcterization of sorghum germplasm was performed through 1986 to 1987, and after parental lines were selected from diverse sorghum germplasm on the basis of flowering date, plant height and several morphological characters for forage sorghum Fl hybrids. The range of variation of 50% flowering date and plant height were greater in order of forage sorghum sudangrass and male sterile line of grain sorghum. The average flowering date was earlier in sudangrass and male sterile line of grain sorghum than forage sorghum lines from the tested sorghum germplasms. And the average plant height was tall in order of forage sorghum, sudangrass and male sterile lines of grain sorghum. There were remarkable morphological variations between sudangrass lines and male sterile lines of grain sorghum such as plant color, leaf midrib color, glume color, seed coat color, head compactness and shape, awns, grain covering and 100 seed weight.

  • PDF

Structure activity relationship on the herbicidal activity by the N-phenyl substituents of 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-Phenylpropionamide derivatives in down land (수답에서 2-(4-(6-chloro-2-benz-oxazolyloxy)phenoxy)-N-phenylpropionamide 유도체 중 N-phenyl 치환체들의 제초활성)

  • Sung, Nack-Do;Lee, Sang-Ho;Ko, Young-Kwan;Lee, Kyung-Mo;Kim, Dae-Whang;Kim, Tae-Joon
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.2
    • /
    • pp.21-28
    • /
    • 2000
  • A new fourty six 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpro- pionamide derivatives were synthesized and the herbicidal activities against rice plant and barnyard grass with pre-emergence in down land were measured. The structure activity relationships (SAR) between the activities and physicochemical parameters of the substituted(X) N-phenyl group in substrates were analyzed and discussed by Free- Wilson and Hansch method from the basis on the former study (Sung. et. al., 1999). The conditions of selective herbicide activity both the barnyard grass and rice plant are shown that the optimal hydrophobicity, $({\pi})_{opt.}=1.34$ and electron donating with field effect (F<0) of meta and ortho, para-substituted mono or disubstituent on the N-phenyl ring were found to contribute significantly. The herbicidal activities against barnyard grass are roughly the same as the results in up land whereas damage to rice plant in down land more increase than that of up land. Degradation products in water are 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)propionic acid ((A)) (obs. pKa=4.35 & obs. logP=4.77) and 6-chloro-2-benzoxazolone (B) (obs. pKa=8.40 & obs. logP=2.90). These results were supposing that the hydrolysis product of substrates, (A) is comparatively absorbed in rice plant but not in barnyard grass. And it is assumed from the SAR equations that the 2,6-dimethyl-4-methoxymethyl group substituent ($pI_{50}=5.41$, 3g/ha) is selected as the most highest herbicidal activity against barnyard grass in green house.

  • PDF