• Title/Summary/Keyword: 화제성

Search Result 486, Processing Time 0.033 seconds

Application of Alkali-Activated Ternary Blended Cement in Manufacture of Ready-Mixed Concrete (알칼리 활성화 3성분계 혼합시멘트의 레미콘 적용 시험)

  • Yang, Wan-Hee;Hwang, Ji-Soon;Lee, Sea-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • Cement industry is typical carbon-emission industry. If the industrial by-products(granulated blast-furnace slag (GGBFS), fly ash, etc.) are used a large amount, it might be able to reduce cement consumption and mitigate carbon emissions. In this case, however, decrease of early strength is relatively large. Therefore, there is a limitation in increase of the amount of substitute. Considering these circumstances, it would be a good solution to reduce carbon emissions in cement industry to improve the performances of mixed cement through proper alkali-activation in Portland blended cement using GGBFS or fly ash. Therefore, this study prepared concrete in ready-mixed concrete manufacturing facilities with an addition of a binder which used 2.0% modified alkali sulfate activator after mixing Portland cement, GGBFS and fly ash in the ratio of 4:4:2 and assessed its basic properties. The results found the followings: The use of modified alkali-sulfate activator slightly reduced slump and shortened setting time. As a result, bleeding capacity decreased while early strength improved. In addition, there is no big difference in carbonation resistance. It appears that there should be continued experiments and analyses on the related long-term aged specimens.

Control of downey mildew occurred on cucumber cultivated under plastic film house condition by optimal application of chemical and installation of ventilation fan (환기조절 및 약제적기살포에 의한 비닐하우스재배 오이에 발생하는 노균병 방제)

  • Kim, Yong-Ki;Ryu, Jae-Dang;Ryu, Jae-Gee;Lee, Sang-Yeob;Shim, Hong-Sik
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.3
    • /
    • pp.223-227
    • /
    • 2003
  • Survey on plant diseases occurring on cucumber cultivated in plastic film house of experimental farm in Suwon was conducted. Through the survey, occurrence of damping-off, downey mildew, powdery mildew and Fusarium wilt was observed. Especially downey mildew caused by Pseudoperonospora cubensis was the most severe foliar disease of cucumber. To control the disease effectively, effects of installation of ventilation fan and optimal spray timing of a chemical, dimethomorph+copper oxychloride WP, were investigated. Two ventilation fans installed at the front and at the back of plastic film house reduced air relative humidity by about 6.4% and downey mildew incidence by 55.7%. Downey mildew incidence on cucumber from untreated chemicals plot in plastic film house installed with ventilation fan was on a equal level with that from treated chemicals plot with three times application of dimethomorph+copper oxychloride WP in plastic film house without ventilation fan. Meanwhile in order to select optimal chemical application time, dimethomorth+copper oxychloride WP was treated three times at 7 days-interval from three days before the disease occurred, right after the disease occurred, and two days after the disease occurred, respectively. The result showed that dimethomorth+copper oxychloride WP applied to cucumber leaves and stems from three days prior to, right after, two days after occurrence of downey mildew reduced downey mildew incidence by 72.9, 61.8, and 23.7%, respectively. The above results showed that regulation of environmental factors like air relative humidity and preventive application of chemicals should be considered to establish control strategy to downey mildew.

Comparison of the Gel Formation Ability and Stability of Encapsulated Microbial Inoculant Using Extractable Alginate from Sea Tangle (다시마 추출 Alginate를 이용한 미생물 캡슐화제의 겔 형성능 및 생균력 비교)

  • Choi, So-Young;Yoon, Min-Ho;Whang, Kyung-Sook
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.170-174
    • /
    • 2006
  • For the purpose of developing a high quality agricultural microbial inoculant, methods and materials for improving encapsulation were investigated. Preparation of capsule was conducted by improving extrusion system with micro-nozzle and peristaltic pump. The sodium alginate was selected because of its cheapness, stability of cells, and gel formation ability. The yields, physical properties and gel formation abilities of extractable alginate from sea tangle were investigated by hot water extractable and alkali soluble methods. The extraction yields of hot water extractable alginate (HWEA) and alkali soluble alginate (ASA) from sea tangle were 8 and 20%, respectively. The HWEA was almost not viscous even in 1.5% of the sample solution, whereas the ASA was very highly viscous in above 3% sample solution. The gel formation ability of each samples varied from 1.5% to 5% and the ASA showed a good gel formation ability at 3% solution as commercial alginate (CA). The soil microbial inoculant, Bacillus thuringiensis, Bacillus subtilis, Lactobacillus plantarum and Geotrichum candidum encapsulated sodium alginate with starch and zeolite for stabilizer. The survivability of encapsulated soil microbial inoculant using alginate without stabilizer appeared to be 66, 52, 70 and 50%, respectively. Inclusion of starch and zeolite with alginate bead increased viabilities in Bacillus sp. and Geotrichum candidum by 81-83% and 89%, respectively.

Effect of Styrene and Maleic Anhydride Content on Properties of PP/Pulp Composites and Reactive Extrusion of Random PP (랜덤 PP의 반응압출 및 PP/Pulp 복합체 특성에 대한 스티렌과 무수말레인산 함량의 영향)

  • Lee, Jong Won;Kim, Ji Hyun;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.318-323
    • /
    • 2014
  • In order to analyze the effect of maleic anhydride (MAH) content and styrene monomer (SM)/MAH mole ratio on reactive extrusion of maleic anhydride grafted random polypropylenes (MAH-g-rPP), MAH-g-rPPs were prepared by using a twin screw extruder. MAH contents were 0.5, 1.0, 3.0, and 5.0 phr and SM/initiator mole ratio was 0.0, 1.0, and 2.0. Dicumyl peroxide (DCP) was used as an initiator. The graft degree of MAH was confirmed by the existence of carbonyl group (C = O) stretching peak at $1700cm^{-1}$ from FT-IR spectrum. The degree of graft reaction increased up to 3.0 phr MAH and showed the optimum value at 1.0 SM/MAH mole ratio from the area ratio of C = O and C-H stretching peak. Thermal and crystallization properties of MAH-g-rPP and PP/MAH-g-rPP/pulp composites were investigated by DSC, TGA, XRD, and POM. There was a decrease in non-isothermal crystallization temperature of PP/MAH-g-PP/pulp composites. Based on tensile properties and SEM pictures for the fractured surface of PP/MAH-g-PP/pulp composites, MAH content of 1.0 wt% and SM/MAH mole ratio of 1.0 were the optimum formulation as the compatibilizer. The rheological properties of the composites were measured by dynamic Rheometer to compare the processability of the composites with and without compatibilizer. The power law index showed slightly low value at the composites with compatibilizer.

Feasibility of Korean Rice Husk Ash as Admixture for High Strength Concrete: Particle Size Distribution, Chemical Composition and Absorption Capacity Depending on Calcination Temperature and Milling Process (고강도 콘크리트 혼화재로서 국산 왕겨재의 활용 가능성: 소성 온도와 분쇄공정 유무에 따른 입도, 성분 및 흡습 성능)

  • Kwon, Yang-Hee;Hong, Sung-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.111-117
    • /
    • 2017
  • This study examined the material properties of Korean rice husk ash (RHA) according to the manufacturing process, and evaluated the feasibility of its use as a new admixture for high strength concrete. For this purpose, its particle size distribution, chemical composition, and microstructure were analyzed under various parameters, such as calcination temperature ($400^{\circ}C$, $650^{\circ}C$, and $900^{\circ}C$) and the inclusion of a milling process. X-ray fluorescence analysis confirmed that the silicon oxide ($SiO_2$) content of RHA was improved to more than 92% with a calcination process at $650^{\circ}C$ or higher. In addition, microstructural analysis showed that the RHA calcined at $650^{\circ}C$ has a porous structure. Because of this, the absorption capacity of the RHA was improved. On the other hand, when the milling process was applied, the porous structure was destroyed; thus, the absorption capacity tended to decrease further. Based on the analysis results, it was concluded that RHA calcined at $650^{\circ}C$ can be used as an admixture for high strength concrete, which possesses functions of both a shrinkage reducing agent and a pozzolanic activator.

Effect of Fillers on High Temperature Shrinkage Reduction of Geopolymers (충전재에 의한 지오폴리머의 고온수축 감소효과)

  • Cho, Young-Hoon;An, Eung-Mo;Chon, Chul-Min;Lee, Sujeong
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.73-81
    • /
    • 2016
  • Geopolymers produced from aluminosilicate materials such as metakaolin and coal ash react with alkali activators and show higher fire resistance than portland cement, due to amorphous inorganic polymer. The percentage of thermal shrinkage of geopolymers ranges from less than 0.5 % to about 3 % until $600^{\circ}C$, and reaches about 5 ~ 7 % before melting. In this study, geopolymers paste having Si/Al = 1.5 and being mixed with carbon nanofibers, silicon carbide, pyrex glass, and vermiculite, and ISO sand were studied in order to understand the compressive strength and the effects of thermal shrinkage of geopolymers. The compressive strength of geopolymers mixed by carbon nanofibers, silicon carbide, pyrex glass, or vermiculite was similar in the range from 35 to 40 MPa. The average compressive strength of a geopolymers mixed with 30 wt.% of ISO sand was lowest of 28 MPa. Thermal shrinkage of geopolymers mixed with ISO sand decreased to about 25 % of paste. This is because the aggregate particles expanded on firing and to compensate the shrinkage of paste. The densification of the geopolymer matrix and the increase of porosity by sintering at $900^{\circ}C$ were observed regardless of fillers.

Efficient Spent Sulfidic Caustic wastewater treatment using Adsorption Photocatalysis System (흡착광산화 시스템을 이용한 효과적인 SSC 페수처리)

  • Kim, Jong Kyu;Lee, Min Hee;Jung, Yong Wook;Joo, Jin Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.520-520
    • /
    • 2016
  • 석유 화학공장에서 발생하는 spent sulfidic caustic (SSC) 폐수는 액화석유가스(LPG)나 천연가스(NG)의 정제과정에서 발생되는 것으로 고농도의 sulfide와 cresylic, phenolic 그리고 mercaptan 등이 포함된 독성과 냄새를 유발하는 물질이다. 이러한 물질들은 LPG나 NG의 정제과정에서 높은 산도를 가진 휘발성 황화합 물질들을 제거하기 위해 사용된 NaOH가 $H_2S$와 반응하여 발생하는 것이다. 진한 갈색 또는 검은색을 띄는 SSC 폐수는 12 이상의 높은 pH를 가지고 있으며 5~12 wt%의 높은 염분도를 가지고 있다. 또한 강한 부식성과 독성을 가진 황화합물의 농도가 1~4 wt%이며, 방향족 탄화수소 물질 (i.e. methanethiol, benzene, tolune and phenol)들도 다량 함유되어 있다. 따라서 이러한 유해 물질들은 기존의 하수처리 공정으로 방류하기 전에 완벽하게 처리해야만 하수처리 공정의 오염 부하량을 줄일 수 있다. 습식산화공정은 SSC 폐수를 처리하기 위해 흔히 사용되고 있는 물리-화학적 처리 공정이지만 고비용, 고에너지가 필요하며, 고온 및 고압에서만 작동되어 안전상의 문제점을 갖고 있다. 또한 습식산화공정을 거친 폐수는 배출허용기준을 만족하기 위해 생물학적 2차 처리가 반드시 필요하다. 철-과산화수소를 이용하는 펜톤산화 공정, 그리고 sulfide를 sulfate로 전환시키는 생물학적 처리 공정은 황화합물의 완전한 무기물화가 힘들며, 현장 적용 시 기술적 경제적 부담이 크다. 이러한 단점을 극복하고, SSC 폐수를 효과적으로 처리하기 위해 본 연구는, 높은 흡착력과 광산화력을 가진 흡착광산화 반응 시스템(Adsorption Photocatalysis System, APS)을 개발하였다. APS는 SSC 폐수를 시스템 내부로 유입하여 수중의 오염물질을 흡착광산화제로 구성된 반응구조체가 흡착하고, 흡착된 오염물질을 UV에너지와 이산화티타늄 광촉매의 광화학반응에 의해 최종적으로 무해한 물질로 환원시키는 폐수처리시스템이다. APS의 반응구조체는 태양에너지 및 인공에너지원에 의해 활용 가능하며, 난분해성 유기화합물질을 물과 이산화탄소로 분해할 수 있는 친환경적이고 경제적인 소재로서 널리 쓰이고 있는 이산화티타늄 광촉매와 화력발전소의 높은 소성온도에 의해 연소된 후 발생되는 bottom ash를 이산화티타늄의 지지체로 사용하여 높은 흡착력과 광촉매 산화력을 가진 복합물이다. 개발된 APS에 의해 SSC 폐수를 처리한 결과, COD 86.1%, 탁도 98.4%, sulfide 99.9%의 높은 처리효율을 보여주고 있다. 따라서 본 연구를 통해 개발된 APS는 강한 부식성과 독성 그리고 높은 농도를 가지고 있는 SSC 폐수를 효과적으로 처리할 수 있다.

  • PDF

A Study on the Commercialization of Polyamide 66/Polypropylene Blend (폴리아마이드 66/폴리프로필렌 블렌드의 상업화 연구)

  • Kim, Seog-Jun;Nam, Byeong-Uk
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.262-272
    • /
    • 2003
  • Maleic anhydride-grafted-polypropylene(PP-g-MA) were used as a blend component and a compatibilizer, respectively, for two reactive blends of polyamide 66(PA 66)PP-g-MA binary blends and PA 66/polypropylene(PP)/PP-g-MA ternary blends. The goal of this work was to investigate the property differences between binary and ternary blends. Tensile strength, flexural modulus, heat deflection temperature, impact strength, melt flow index, and the dependence of melt viscosity on the shear rate were examined. The impact strengths of binary blends were higher than those of ternary blends at all compositions, since the in situ synthesis of PP-g-PA 66 copolymer through the imide formation between the amine end group of PA 66 and the anhydride group of PP-g-MA gave the increase of molecular weight and was more popular in binary blends than in ternary blends. In case of ternary blends, most of the properties were superior to those of binary blends, owing to the better properties of PP compared with PP-g-MA. The toughened binary blends with 70/30(PA 66/PP-g-MA) and 80/20 ratios were not commercially applicable due to their poor processibility. So, the ternary blends which showed lower melt viscosities were recommended for the commercial applications.

Evaluating Heavy Metal Stabilization Efficiency of Chemical Amendment in Agricultural Field: Field Experiment (안정화제 처리에 따른 중금속 오염 농경지 복원의 효율성 평가: 현장실증시험)

  • Oh, Se-Jin;Kim, Sung-Chul;Yoon, Hyun-Soo;Kim, Ha-Na;Kim, Tae-Hwan;Yeon, Kyu-Hun;Lee, Jin-Soo;Hong, Sung-Jo;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1052-1062
    • /
    • 2011
  • Residual of heavy metals originated from abandoned metal mines in agricultural field can cause adverse effect on ecosystem and eventually on human health. For this reason, remediation of heavy metal contaminated agriculture field is a critical issue. In this study, five different amendments, agriculture lime, dolomite, steel slag, zeolite, and compost, were evaluated for stabilization efficiency of heavy metals in agricultural field. Applied mixing ratio of amendments was varied (2% or 6%) depending on properties of amendments. Result showed that soil pH was increased compared to control (6.1-6.7) after mixing with amendments and ordered as dolomite (7.2~8.3) > steel slag (6.7~8.1) > agriculture lime (6.6~7.4) > zeolite (6.2~6.9) > compost (6.1~7.1). Among other amendments, agriculture lime, steel slag, and dolomite showed the highest stabilization efficiency of heavy metals in soil. For Cd, stabilization efficiency was 49~72%, 51~83%, and 0~36% for agriculture lime, steel slag, and dolomite respectively. In case of Pb, 43~64, 37~73%, and 51~73% of stabilization efficiency was observed for agriculture lime, steel slag, and dolomite respectively. However, minimal effect of heavy metal stabilization was observed for zeolite and compost. Based on result of this study, amendments that can increase the soil pH were the most efficient to stabilize heavy metal residuals and can be adapted for remediation purpose in agricultural field.

Production of Bio-Carbon from Unused Biomass through CO2 Activation: Removal Characteristics of Formaldehyde and Acetaldehyde (미이용 바이오매스의 이산화탄소 활성화를 통한 바이오카본 생산: 포름알데하이드 및 아세트알데하이드 제거 특성)

  • Kim, JongSu;Choi, SeukCheun;Lee, Uendo;Park, EunSeuk;Jeong, Soohwa
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.325-331
    • /
    • 2021
  • In this study, bio-carbons were produced by activation process from unused biomass (Grade 3 wood pellet and spent coffee grounds) to determine the removal performance of formaldehyde and acetaldehyde. The activation experiments were conducted in a fixed bed reactor using CO2 as an activation agent. The temperature of the activation reactor and input of CO2 were 900 ℃ and 1 L min-1 for all the experiments. The maximum BET surface area of about 788 m2 g-1 was obtained for bio-carbon produced from Grade 1 wood pellet, whereas about 544 m2 g-1 was achieved with bio-carbon produced from spent coffee grounds. In all the experiments, the bio-carbons produced were mainly found to have micro-porous nature. A lower ash amount in raw material was favored for the high surface area of bio-carbons. In the removal test of formaldehyde and acetaldehyde, the bio-carbon produced from spent coffee grounds showed excellent adsorption performance compared with woody biomass (Grade 1 wood pellet and Grade 3 wood pellet). In addition, the comparative experiment of commercial impregnated activated carbon and bio-carbon produced from spent coffee grounds was conducted. In terms of formaldehyde removal performance, the commercial impregnated bio-carbon was excellent, while bio-carbon produced from spent coffee grounds was excellent in acetaldehyde removal.