• Title/Summary/Keyword: 화재 억제

Search Result 104, Processing Time 0.02 seconds

A Review on Spalling Phenomenon of High Strength Concrete during a Fire Accident (화재시 고강도 콘크리트의 폭열현상에 관한 고찰)

  • Kim, Hyung-Doo
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.80-86
    • /
    • 2006
  • This study focuses on spalling phenomenon which is the one of the main issues of high strength concrete. The definition, classification and characterization, causes and the reaction mechanism of the spalling were investigated on the basis of previous literatures. The spalling phenomenon occurs when several factors such as sharp temperature increase, high water content, low water/cement ratio and local stress concentration in material combine in the concrete material. On the basis o f the factors, the preventing methods from the spalling are known as decrease of temperature increase, preventing of concrete fragmentation and fast drying of internal moisture. In this study, the controlling method of water content below some critical value was proposed as the most effective spalling-preventing method among the spalling-preventing methods. The spalling phenomenon can be prevented by adjusting the water content in the high strength concrete. Therefore, an enforced drying method is needed to decrease the water content below a critical value. Additional experimental data should be generated to determine the critical value of water content for preventing the spalling.

Effect of Positive Pressure Ventilator Tilting Angle on the Flame Suppression and Smoke Density (Positive Pressure Ventilator 경사각 변화에 의한 화염억제 효율과 연기농도 변화)

  • Kim, Sung-Won;Lee, Kyoung-Duck;Shin, Chang-Sub
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.135-142
    • /
    • 2006
  • The experiment applied Positive Pressure Ventilation to rapidly exhaust heat and smoke inside the construction in the fire was done. Changes of heat discharge and smoke density were measured, with the various blowing condition like a fan tilting angle to find the effect of the parameter. Experimental apparatus were with PPV and water mist system for better efficiency, and investigate the effect of heat discharge and smoke removal. In the experiment, flame temperature has decreased when PPV was applied. Smoke density, generated from fire also decreased dramatically and the efficiency showed the highest rate at $0^{\circ}$ tilting angle. In addition, combination of PPV and water mist system highly improved the efficiency of evacuation on heat and smoke density, clearly was influenced by the tilting angle.

An Experimental Study on Mechanical Ventilation Using an Exhaust Engine in Corridor Fires (복도공간 화재 시 배연차를 활용한 배연에 관한 실험적 연구)

  • Lee, Sung-Ryong;Han, Dong-Hoon
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.99-105
    • /
    • 2010
  • Ventilation fans utilized correctly can increase the effectiveness of fire fighters and survivability of occupants. It is possible to increase the pressure of a corridor to prevent the infiltration of smoke. In this study, experiments were carried out to evaluate ventilation effectiveness in corridor fires. Corridor used in the experiment was 20 m long. Heptane was used as a fuel. Temperature and visibility were measured in order to evaluate ventilation effectiveness according to the position of a vent. Vent distance ranged from 0 m to 4 m and height varied from 0 m to 1.5 m. When the vent was positioned 2 m long and 0.75 m high the result was most effective.

Investigation and Theoretical Analysis of a Fire Accident Caused by Smoldering Combustion (Smoldering 연소로 인한 화재사고 조사보고 소개 및 이론적 해석)

  • 김연승;변영철;황정호
    • Fire Science and Engineering
    • /
    • v.13 no.3
    • /
    • pp.3-17
    • /
    • 1999
  • Smoldering is a non-flaming combustion mode, characterized by thermal degradation and c charring of the virgin material, evolution of smoke and emission of visible glow. A big fire may @ occur even in a confined environment having a limited amount of oxygen, due to smoldering c combustion through a porous solid material. This paper presents a theoretical analysis on the effect of smoldering combustion on fire occurrence based on a report about fire investigation of a real f fire accident. It is assumed that the propagation of the smolder wave is one-dimensional, d downward, opposing an upward forced flow and steady in a frame of reference moving with the s smolder wave. Smoldering combustion is modeled by a one-step reaction mechanism, without c considering pyrolysis. It is found that dominant parameters controlling smoldering combustion i include mass flux of oxidizer entering the reaction zone and void fraction of solid fuel. It is also found that the mechanism of transition to flaming is critically influenced by these two parameters.

  • PDF

Study on combustion characteristics of the Wood (Pinus rigida, Castanea sativa, Quercus variabilis and Zelkova serrala) grew up in Korea (한국에서 자란 목재(리기다 소나무, 밤나무, 굴참나무, 느티나무)의 연소특성에 관한 연구)

  • Shi, Nan;Jin, Eui;Oh, Jung-Kyoo;Chung, Yeong-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.321-324
    • /
    • 2011
  • 건자재로서 나무 결함 중의 하나는 화재에 대한 취약성이다. 본 연구의 목적은 한국에서 자란 리기다 소나무, 밤나무, 굴참나무, 느티나무의 연소성질을 시험하는 것과 건자재로서의 사용에 대한 바람직한 특성을 알아내는 것이며 연소억제를 위해 실온에서 3종류의 암모늄염 즉, ammonium sulfate, monoammonium phosphate, 그리고 diammonium phosphate를 20 wt% 수용액에 각각 리기다 소나무를 함침시켜 건조시킨 후 재료의 난연성을 시험하였다. 콘칼로리미터(ISO 5660-1)를 이용하였고 분석 결과로는 열방출랑을 비롯하여, 가스방출량, 발화점 등을 측정하여 비교분석하였다.

  • PDF

The Influence of Silica Fume and PP Fiber Contents on Explosive Spalling of Concrete (실리카흄 및 PP섬유가 콘크리트의 폭렬에 미치는 영향)

  • Kim, Dong-Joon;Kim, Jeng-Hee;Lee, Jae-Young;Kazunori, Harada;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.382-385
    • /
    • 2011
  • 본 논문은 초고강도콘크리트의 폭렬현상을 연구해 보고자 실리카흄 유무와 PP섬유의 혼입량을 변수로 하여 공시체와 벽체의 폭렬현상을 관찰한 후 변수가 초고강도콘크리트에 어떠한 영향을 주는지를 실험적으로 규명하는 것을 목적으로 하였다. KS F 2257 화재온도이력곡선을 30분 적용하여 콘크리트의 초기 폭렬특성을 실험적으로 검토하였다. 그 결과 공시체의 경우 압축강도가 100 MPa 초고강도콘크리트의 경우에는 실리카흄 여부와 PP섬유 혼입량이 폭렬억제에 관계되는 주요 인자인 것을 알 수 있었으며, 벽체의 경우에는 벽체 시험체의 부분 가열 및 전면 가열 실험을 실시했다. 폭렬 최대 깊이, 시간, 소리 발생 회수를 비교하면 부분 가열이 전체 가열에 비해 폭렬이 빠르고 깊게 발생하는 것으로 나타났다.

  • PDF

Evaluation on Fire Spread Speed of Standard Rack in Korea for Performance based Fire Extinguishing System (성능위주 소화설비 적용을 위한 표준랙크의 화재확산속도 평가)

  • Cho, Gyu-Hwan;Yeo, In-Hwan
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.84-91
    • /
    • 2016
  • In case of fire, vertically and intensively loaded rack warehouses are faced with a severe status due to the rapid increase in fires. In this regard, there have been trials to prevent fires from spreading by applying fire extinguishing systems, such as ESFR and In-Rack Sprinklers, vertical and horizontal barriers, etc.; however, it is difficult to calculate and design proper fire extinguishing systems caused by various composition conditions, such as the size and loading density of the rack, types of loading commodities, etc. Therefore, in this study, a standard rack was manufactured, incorporating a rack warehouse in Korea by site investigations, surveys, etc. In addition, a full scale fire test was executed to check the fire characteristics depending on the conditions of the ignition points. As a result, the extracted fire spread speed is expected to be utilized as a reference for performance comparisons of the fire extinguishing systems to be developed and applied in the future.

Application of Horizontal Barrier on a Rack to Reduce Fire Spread (화재확산 저감을 위한 랙크 내 수평차단막 적용에 관한 연구)

  • Yeo, In-Hwan;Cho, Gyu-Hwan
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.71-79
    • /
    • 2017
  • A rack warehouse with a vertically loading type and high loading density has severe risks and damage during its fire. In this regard, US and Japan strive to minimize the fire spread by applying in-rack sprinkler, horizontal barriers, etc. corresponding to their own rack warehouse but there is no study and policy in Korea. Therefore, a model scale fire test was carried out targeting the standard rack incorporating the national rack warehouse in order to check fire characteristics in ignition points and installation distances of horizontal barriers in this study. As a result of the test, vertical fire spread of about 30% was inhibited by narrowing its installation distance from 2-layer to 1-layer in an ignition condition of the flue space. In addition, as a result of the measurement of the temperature in the upper and lower parts of the horizontal barrier, the temperature distribution showed about 2~4 higher in a condition with an installation of the barrier than that in the condition without the barrier. Consequently, it is likely that the horizontal barrier will help the initial operation of in-rack sprinkler.

미세물분무의 영향에 따른 PPV의 화염억제 특성

  • 김성원;이경덕;신창섭
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.408-411
    • /
    • 2003
  • PPV(Positive Pressure Ventilation)란 화재진압시 송풍기를 이용하여 화염이 발생한 구조물 내부로 신선한 공기를 유입시켜 내부압력을 상승시키는 방식으로서, 구조물 내부의 전체 영역에 균일하게 열ㆍ연기 및 연소 생성물 등의 급속 배기 및 구조물 내부온도를 급속히 감소시킬 수 있는 것이 특징이다.(중략)

  • PDF

Numerical Study on the Effects of Spray Properties of Water Mist on the Fire Suppression Mechanism (미분무수 특성이 화재억제 메커니즘에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Kang-Youl;Chung, Hee-Taeg;Kim, Hyoung-Bum
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • The numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m^3$ and a water mist nozzle that be installed 1.8 m from fire pool. In the present study, the parameters of nozzle for simulation are the droplet size and the spray velocity. The droplet size influences to fire flume on fire suppression more than the spray velocity because of the effect of the terminal velocity. The optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20 m/s respectively.