• Title/Summary/Keyword: 화재저항성

Search Result 89, Processing Time 0.025 seconds

Study on the prediction of the stopping probabilities in case of train fire in tunnel by Monte Carlo simulation method (몬테카를로 시뮬레이션에 의한 화재열차의 터널 내 정차확률 예측에 관한 연구)

  • Ryu, Ji-Oh;Kim, Jong-Yoon;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.11-22
    • /
    • 2018
  • The safety of tunnels is quantified by quantitative risk assessment when planning the disaster prevention facilities of railway tunnels, and it is decided whether they are appropriate. The purpose of this study is to estimate the probability of the train stopping in the tunnels at train fire, which has a significant effect on the results of quantitative risk assessment for tunnel fires. For this purpose, a model was developed to calculate the coasting distance of the train considering the coefficient of train running resistance. The probability of stopping in case of train fire in the tunnel is predicted by the Monte Carlo simulation method with the coasting distance and the emergency braking distance as parameters of the tunnel lengths and slopes, train initial driving speeds. The kinetic equations for predicting the coasting distance were analyzed by reflecting the coefficient train running resistance of KTX II. In the case of KTX II trains, the coasting distance is reduced as the slope increases in a tunnel with an upward slope, but it is possible to continue driving without stopping in a slope downward. The probability of the train stopping in the case of train fire in tunnel decreases as the train speed increases and the slope of the tunnel decreases. If human error is not taken into account, the probability that a high-speed train traveling at a speed of 250 km/h or above will stop in a tunnel due to a fire is 0% when the slope of the tunnel is 0.5% or less, and the probability of stopping increases rapidly as the tunnel slope increases and the tunnel length increases.

Development on Electrical Fire Prevention System of Small Size and High Speed by using PTC Thermistor (PTC 서미스터를 이용한 소형 고속응성의 전기화재 방재시스템 개발)

  • Kwak, Dong-Kurl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • This paper is studied on a prevention system for electrical fire and electrical faults by using electrical temperature characteristic of PTC thermistor. The PTC thermistor has characteristic of positive resistivity temperature coefficient according to the temperature variation, which is construction of a regular square and cube demarcation with $BaTiO_3$ ceramics of positive temperature coefficient. Also PTC shows the phenomenon which is rapidly increased in the resistivity if the temperature is increased over Curie temperature point. This paper is proposed on a protective control system used with temperature sensor of PTC thermistor. The proposed prevention system will prevent electrical fires due to electric short circuit faults or overload faults. And the prevention system will solve the problems that circuit breakers to be commonly used at existing are happened frequently electrical fires and electrical disasters due to incapable operation, weak reliability and low speed response. Some experimental results of the proposed apparatus are confirmed to the validity of the analytical results.

  • PDF

Resistance of Chloride Penetration into High Strength Concrete Containing Mineral Admixtures according to Curing Conditions (광물질혼화재 혼합 고강도콘크리트의 양생조건에 따른 염화물이온 침투저항성)

  • Moon, Han-Young;Kim, Byoung-Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.185-194
    • /
    • 2004
  • In recent years, construction company makes inroads into the world construction market, and receives the order of extra-large concrete structure under marine environment in south-east asia specially. At this point of time, to enhance the quality of concrete, we research the High Strength Concrete (HSC) containing mineral admixtures. In this study, therefore, HSC with various combination of ordinary portland cement(OPC), blast-furnace slag(SG), silica fume(SF), and expansion admixture(SS) are cured 23 and $35^{\circ}C$ considering the site weather, and are cured in water for 3, 7 or 56 days respectively. Test results show that the HSC cured at $35^{\circ}C$ gains higher early-age strength but eventually gains lower later-age strength compare with the HSC cured at $23^{\circ}C$. Especially, HSC with combination of OPC+SG+SF+SS or OPC+SG+SF show very excellent resistance of chloride penetration. The permeability of HSC was therefore enhanced as because of containing the proper content of SG, SF, and SS and making dense micro-structure of HSC.

Development of Damage Estimation Method using Sensor of Multiple Function in RC Beam (철근 콘크리트 보에서의 다기능 센서를 이용한 손상 추정법 개발)

  • Kim, Ie-Sung;Park, Kang-Geon;Kim, Wha-Jung
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.184-188
    • /
    • 2008
  • Performance degradation of concrete structures is generally caused by structural deteriorations, such as cracks. It may result in serious defects of concrete structures. Methods of damage detection are used a visual angle of human or non-destructive test, and they are using various sensors. Problems of crack damage detection are occurred to directions of cracks by using 1 axial type of accelerometer in concrete element. In addition, these sensors are not used to occurring fire in RC building. Thermocouple sensors are able to using measurement of temperature in fire, and then deformations of main element and structures are not used. In this study, fundamental studies for development of multiple function sensor using 3 axial type of accelerometer and electric resistance property of thermocouple sensors are discussed estimation to stability of structures when happened form active load or fire, and so on.

  • PDF

Analytical Study of Fire Resistance Performance of Plant Facilities using Ansys (Ansys를 활용한 플랜트 시설물 내화성능에 대한 해석적 연구)

  • Doo Chan Choi;Min Hyeok Yang;Su Min Oh;So Jin Yang
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.958-967
    • /
    • 2023
  • Purpose: This study aims to analyze the fire resistance performance applied to plant facilities with high fire risk in Korea, secure suitable fire resistance performance, and ensure the fire safety of plant facilities. Method: Using the finite element analysis program Ansys, thermal transfer analysis and structural analysis were performed with fire load and fireproof coating as variables, and the fire resistance performance of plant facilities was analyzed based on the analysis results. Result: The fireproof coating applied to domestic plant facilities failed to secure fire resistance performance when the fire load of hydrocarbon fire presented in UL 1709 was applied, and it was confirmed that the deformation of steel after the fire was also significant. Conclusion: The current fire resistance performance applied to plant facilities in Korea cannot secure fire resistance performance in sudden fire growth and large fire loads like petrochemical plants, and it is necessary to secure fire safety by evaluating suitable fire resistance performance through performance evaluation of plant facilities.

Degradation Evaluation of High Pressure Reactor Vessel in field Using Electrical Resistivity Method (전기비저항법을 이용한 고압반응기 열화도 현장평가)

  • Park, Jong-Seo;Baek, Un-Bong;Nahm, Seung-Hoon;Han, Sang-In
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.377-383
    • /
    • 2005
  • Because explosive fluid is used at high temperature or under high pressure in petrochemistry and refined oil equipment, the interest about safety of equipments is intensive. Specially, the safety of high pressure reactor vessel is required among them. The material selected in this study is 2.25Cr-1Mo steel that is widely used for high pressure reactor vessel material of petrochemical plant. Eight kinds of artificially aged specimens were prepared by differing from aging periods under three different temperatures. The material was iso-thermally heat treated at higher temperatures than $391^{\circ}C$ that is the operating temperature of high pressure reactor vessel. Vickers hardness properties and electrical resistivity properties about artificially aged material as well as un-aged material were measured, and master curves were made out from the correlation with larson-Miller parameter. And electrical resistivity properties as well as Victors hardness properties measured at high pressure reactor vessel of the field were compared with master curves made out in a laboratory. Degradation evaluation possibility in the field of high pressure reactor vessel by using electrical resistivity method was examined. Electrical resistivity property measured in the field is similar with that of artificially aged material in similar aging level.

A Study on the Risk of Electric Shock from the Sprayed Water for Fire Suppression of the PV Installed Building (태양광 발전설비가 설치된 건물의 진화 시 주수에 의한 감전의 위험성에 관한 연구)

  • Kim, Jinsun;Kwon, Seong-Pil
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.47-51
    • /
    • 2014
  • In this study we investigated the risk of electric shock and the possibility of current flow from the sprayed water when fire took place in a photovoltaic (PV) installed building. The sprayed water was analysed by using a mathematical model, a water spray system for water conductivity was made. With changing the initial water flow rate the water resistance was measured, and compared with the numerically expected value. As the experimental and numerical computing result, we were able to define the requirements that must be considered in the fire of PV systems.

A Study on the Analysis of the Resistance Characteristics and Damage Patterns of Brass Fittings Type CSST (황동이음쇠형 금속플렉시블호스(CSST)의 저항 특성 및 소손 패턴 해석에 관한 연구)

  • Lee, Jang-Woo;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.67-73
    • /
    • 2016
  • This paper examined the structure, fire resistance of brass fittings type CSST employed in gas appliances and the reliability verification. Brass fittings of type CSST consisted of cladding, tubing, nut, clamp ring, socket, and ball valve. The applicable JIA standard regulates the maximum working pressure to be 4.2 kPa, which is the highest pressure of the relevant standards and the KS D 3625 stipulates the maximum pressure to be 3.24 kPa. With a normal product, the average resistance within the confidence interval was found to be $7.36m{\Omega}$. The average resistance within the confidence interval was $6.67m{\Omega}$ after the fire resistance tests. The analysis indicated that the AD was 1.584 and the standard deviation was 0.3972 with respect of a normal product. Compared to the normal product, however, the damaged product after the fire resistance test showed better features, such as an AD of 1.145 and a standard deviation of 0.2467. Moreover, the average resistance of the normal product was $7.359m{\Omega}$ and the standard deviation in histogram analysis was 0.3972. The average resistance of the damaged product after the fire resistance test in the histogram was $6.67m{\Omega}$ and the standard deviation was 0.2467.

A Study on Developing of Soldering Flux (납땜 플럭스 개발에 관한 연구)

  • 이통영
    • Fire Science and Engineering
    • /
    • v.14 no.2
    • /
    • pp.33-38
    • /
    • 2000
  • Flux, essentially used in soldering process of PCB (Printed Circuit Board) in electronics industry, contains IPA (Isopropyl alcohol) and methanol, which are highly inflammable and explosive. Hazard Chemical Controlling Law classified methanol as toxic material and Environmental Law classified methanol as VOC (Volatile Organic Compound). So there have been pressing needs of developing substitutes for the existing Flux. New solvent which is non-flammable and main component is DCP having same specific character of the existing Flux. It's been combirated with proper composition ratio adding stabilizer. As a result, it relieved working Environment Allowance thickness 200 ppm to 470 ppm, chance of not been soldered 0.083% to 0%, spread 85% to 87%, power saving resistance 1.0$\times$$10^{12}$$\Omega$ to 6.9$\times$$10^{12}$$\Omega$, which means a lot better than the existing Flux. Therefore, Flux confirmed the chance of improving productivity, safety, environment safety and quality. Also, Flux got a satisfied result after product quality test and product reliability test.

  • PDF

Performance of cement concrete pavement incorporating mineral admixtures (광물질혼화재를 적용한 시멘트콘크리트 포장의 성능 평가)

  • Lee, Seung-Tae;Lee, Da-Hyun;Lee, Jae-Jun
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.113-119
    • /
    • 2010
  • This study presents experimental findings on the performance of cement concrete pavement incorporating mineral admixtures such as ground granulated blastfurnace slag and silica fume. Flexural strength, compressive strength, charge passed, diffusion coefficient of chloride ions and initial surface absorption of cement concrete pavement incorporating mineral admixtures were periodically measured and the corresponding results were compared to those of plain concrete pavement. As a result, strength behaviors of concrete pavement were dependent on the types of mineral admixtures. However, it was true that incorporation of silica fume had a beneficial effect on compressive strength development. Furthermore, the application of mineral admixtures led to a lower diffusion coefficient of chloride ions compared to plain concrete pavement. Based on the experimental results, the present study would be helpful to design high-performance cement concrete pavement.