• Title/Summary/Keyword: 화재위험성 평가

Search Result 441, Processing Time 0.029 seconds

Characteristics and Risk Assessment of Flame Spreading Over Metal Dust Layers (퇴적금속 분진층을 전파하는 화염의 연소특성과 위험성 평가)

  • Han, Ou-Sup
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.47-52
    • /
    • 2005
  • The wide use of metal dusts have been found in industrial field and many dust explosion accidents occur by fire spread of dust layer. In this study, we developed a new experimental device to examine fire and explosion characteristics of the dust layer. Aspects of the burning zone over metals(Mg, Zr, Ta, Ti, etc) and PMMA(Polymethyl methacrylate) dust layers have been investigated experimentally to clarify behaviors (Spread rate and quenching distance) and effects of $N_2$ surrounding gas on the fire spread over metal dust layers. From the experimental result, it was found that the spread rate of metal dusts is larger than PMMA, the dependability of spread rate over the thickness of dust layer is small, and the minimum oxygen concentration of spread flame over Mg dust layer is 3.6-3.7 vol%. Since high correlation between the spread rate and the reciprocal of quenching distance was seen, relative risk prediction in those inflammable parameters can be predicted.

Consequence Analysis of Hydrogen Blended Natural Gas(HCNG) using 3D CFD Simulation (CFD를 활용한 수소-천연가스 혼합연료에 대한 피해영향 분석)

  • Kang, Seung-Kyu;Bang, Hyo-Jung;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.15-21
    • /
    • 2013
  • This study evaluated comparison of the risk according to the type of fuel by three-dimensional simulation tool(FLACS). The consequence analysis of fire explosion and jet-fire was carried out in the layout of a typical high-pressure gas filling stations using CNG, hydrogen and 30%HCNG. Under the same conditions, hydrogen had a 30kPa maximum overpressure, CNG had a 0.4kPa and HCNG had a 3.5kPa. HCNG overpressure was 7.75 times higher than the CNG measurement, but HCNG overpressure was only 11.7% compared to hydrogen. In case of flame propagation, hydrogen had a very fast propagation characteristics. On the other hand, CNG and HCNG flame propagation velocity and distance tended to be relatively safe in comparison to hydrogen. The estimated flame boundary distance by jet-fire of hydrogen was a 5.5m, CNG was a 3.4m and HCNG was a 3.9m.

Evaluation of Fire Investigation as the Separation Distances for Several Types of Insulation Panels (단열패널 종류별 이격거리에 따른 화재감식 평가)

  • Kim, Jeong-Hun;Kim, Da-Seul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.403-412
    • /
    • 2021
  • Despite strengthening requirements for fire retardancy and applied buildings of insulation panels, the number of fires and influence of damage have increased. In this study, the thermal effects were evaluated as the separation distances, and three types of EPS panel, glass wool panel, and gypsum board panel were then selected. Temperature sensors on the panels were installed vertically from the ground. The fire source on the lamination layer of lumber was ignited by changes in the separation distances (0 cm, 25 cm, 50 cm) from the panels. The test results suggested that the maximum temperature was 349 ℃ in the EPS panel. The inside/outside shape changes were limited by the height of the low and middle positions until the critical point of a 25 cm separation distance. Furthermore, the combustion marks appeared after 500 s on average, and then the EPS panel with a high fire strength showed a broad "U type" pattern, glass wool panel, and gypsum board panel showed medium or narrow "V type" pattern. Therefore, the acquired data can provide valuable information for evaluating the fire risks and verifying fire investigation from buildings composed of these insulation panels.

A Study on Combustion Experiments of Color Nonwoven (칼라 부직포의 연소실험에 관한 연구)

  • Min, Se-Hong;Im, Sang-Bum
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.99-106
    • /
    • 2011
  • Experiments of Cone calorimeter test and Lift spread flame apparatus test are carried out in order to appraise fire hazard in color nonwoven used mostly on the spot in construction works. As the result, in color nonwoven combustibility is discovered not firing flame in surface, but firing under state of combustible gas occuring in the state of melting. In the case of Lift spread flame apparatus test, color nonwoven is very brittle which almost no flame spread owing to contracting and break by firing strength. The following data are agree with basis: total heat release is 2.66 MJ/$m^2$, limited combustible material (10 min) of incombustible rating appraisal in interior material of building, and incombustible materials (5 min) 8 MJ/$m^2$ in spite of the above data mentioned, those data are only as basis of interior finish, and so I cannot judge color nonwoven have incombustible rating retain through the above data. Accordingly, the basis of incombustible rating and experiment method about exterior finish must be arranged also.

A Study on Quantitative Risk Analysis & Model Application for Hydrogen Filling Center (수소충전시설에 대한 정량적 위험성 평가 및 모델적용에 관한 연구)

  • Shin, Jung-Soo;Byun, Hun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.87-101
    • /
    • 2012
  • In gas industries, the potential risks of serious accidents have been increased due to high technology application and process complexities. Especially, in case of gas-related accidents, the extent of demage is out of control since gas plants handle and produce combustible, flammable, explosive and toxic materials in large amounts. The characteristics of this kind of disaster is that accident frequency is low, while the impact of damage is high, extending to the neighboring residents, environment and related industries as well as employees involved. The hydrogen gases treated important things and it used the basic material of chemical plants and industries. Since 2000, this gas stood in the spotlight the substitution energy for reduction of the global warming in particular however it need to compress high pressure(more than 150 bar.g) and store by using the special cylinders due to their low molecular weight. And this gas led to many times the fire and explosion due to leak of it. To reduce these kinds of risks and accidents, it is necessary to improve the new safety management system through a risk management after technically evaluating potential hazards in this process. This study is to carry out the quantitative risk assesment for hydrogen filling plant which are very dangerous(fire and explosive) and using a basic materials of general industries. As a results of this risk assessment, identified the elements important for safety(EIS) and suggested the practical management tools and verified the reliability of this risk assessment model through case study of accident.

가스 분출시 정전기 대전에 의한 위험성 평가 장치 개발

  • ;;;;;;Mizuki YAMAGUMA;Tsutomu KODAMA
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.101-107
    • /
    • 2000
  • 가연성 가스가 누출함에 따른 화재 및 폭발 재해는 공업화 사회에 있어서 방치될 수 없는 매우 중요한 문제이다. 기체, 액체, 분체가 단면적이 작은 분출구를 통해 공기중으로 분출될 때 분출하는 물질과 분출구와의 마찰로 인해 정전기가 발생한다. 분출되는 물질과 분출구를 구성하는 물질의 직접적인 마찰에 의해서도 정전기가 발생하고, 분출되는 물질 구성입자들간 상호충돌에 의해서도 정전기가 발생된다. 배관 내에 순수천연가스가 이송ㆍ분출할 때의 대전량은 매우 작다. (중략)

  • PDF

양론계수와 연소열을 이용한 Ether류의 폭발하한계 예측

  • 하동명;최용찬;이성진;이수경
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.428-433
    • /
    • 2003
  • 화재 및 폭발 특성치로 인화점, 최소발화온도, 폭발한계, 최소발화에너지, 연소열 등을 들 수 있다. 연소특성은 인화성용제들(석유류 및 알코올류 등)의 취급, 저장, 수송에서 포함되어 있는 잠재 위험성을 평가할 때 고려된다. 여러 연소특성 가운데 폭발한계(explosive limits)는 가연성물질(가스 및 증기)을 다루는 공정 설계 시 고려해야 할 중요한 변수로써, 발화원이 존재할 때 가연성가스와 공기가 혼합하여 일정 농도범위 내에서만 연소가 이루어지는 혼합범위를 말한다.(중략)

  • PDF

메탄 및 LNG 폭발 특성에 관한 연구

  • 하동명
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.273-278
    • /
    • 1998
  • 여러가지 연소특성들은 가연성물질의 취급함에 있어 밸브조작실수, 배관접합부 파손. 저장 및 수송의 부주의로 주위에 공기와 혼합되면 화재 및 폭발이 발생할 수 있는 잠재적 위험성을 평가할 수 있다. 여러 연소특성 가운데 폭발(연소)한계(explosive (flammable) limits)는 가연성물질(가스 및 증기)을 다루는 화학공정에 있어 설계시 고려해야 할 가장 중요한 변수로써, 발화원이 존재할 때 가연성가스와 공기가 혼합하여 일정 농도 범위내에서만 연소가 이루어지는 혼합범위를 말한다. (중략)

  • PDF

프로판가스의 자연발화온도 및 폭발한계 예측에 관한 연구

  • 하동명;이수경
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.61-66
    • /
    • 2001
  • 가스 공정에서 취급하는 가연성물질의 연소 특성 파악은 공정의 안전 확보에 가장 중요한 문제이다. 따라서 연소특성들은 가연성물질이 공정의 취급상 부주의로 인해 누출되어 주위에 공기와 혼합되면 화재 및 폭발이 발생할 수 있는 잠재적 위험성을 평가할 수 있다. 연소특성들로는 폭발한계, 인화점, 최소자연발화점, 최소산소농도, 최소발화에너지, 연소열 등을 들 수 있다/sup 1)/.(중략)

  • PDF

Risk Assessment of Compressor Room for Next Generation LNG Carriers (차세대 LNG선 컴프레서룸의 위험성 해석)

  • Moon, Ki-Ho;Song, Seok-Lyong;Jeong, Sam-Heon;Ha, Jong-Phil
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.76-83
    • /
    • 2008
  • New and more efficient propulsion systems are required for LNG carriers. One of the proposed systems is a combination of a gas turbine with a heat recovery steam generator. This system constitutes a novel approach, which needs to be analyzed by system analysis and risk assessment to compensate for the lack of field experience. Of specific concern is the high pressure fuel supply system. This paper describes the dispersion and fire analysis performed to identify for safety and design improvement of proposed system.

  • PDF