• 제목/요약/키워드: 화자 확인

검색결과 248건 처리시간 0.077초

잡음 환경에서 화자 확인을 위한 다중대역에 기반한 공분산 방법 (Covariance Model Based on Multi-Band for Speaker Verification in Noise)

  • 최민정;이기용
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 추계학술발표대회논문집 제23권 2호
    • /
    • pp.127-130
    • /
    • 2004
  • 기존의 전대역(Full-Band)에서 특징 파라미터를 추출하는 화자 확인(Speaker Verification) 시스템은 저대역이나 고대역에서 화자 정보의 특징이 제거되기 쉽다. 또한, 주파수 스펙트럼에 부분적으로 오염이 되는 경우, 특징 파라미터를 왜곡시켜 화자 확인 시스템의 성능을 저하시킨다. 본 논문에서는 이러한 문제점을 해결하기 위해 다중대역 공분산 모델(Covariance Model)을 제안한다. 제안한 방법은 주파수 영역에서 전대역을 여러 개의 부대역(Sub-Band)으로 분할하고, 부대역별로 독립적으로 특징 파라미터를 추출하여 공분산 모델을 구한다. 제안된 방법의 성능 확인을 위하여 공분산 모델 간의 거리를 측정하는 화자 확인 실험을 하였다. 잡음 환경에서 기존의 방법인 전대역에 기반한 공분산 모델과 제안한 방법을 비교 분석한 결과, 제안한 방법이 기존 방법보다 $2\%$정도 성능이 향상되었다. 또한, 제안된 방법은 전대역에 기반한 파라미터 차원 수를 다중대역의 개수로 분할하여 사용하므로 계산량의 감소와 저장 공간면에서 효율적이다.

  • PDF

문장종속형 화자확인에서의 관측확률 가중기법 (Observation Probability Weighting Method for Text-Dependent Speaker Verification)

  • 김세현;장길진;오영환
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
    • /
    • pp.28-31
    • /
    • 1999
  • 기존의 문장종속형 화자인식 방법들은 대부분 음성인식에서 사용되는 방법을 그대로 적용하기 때문에, 화자의 개인성 정보보다 음운정보에 더 민감한 단점이 있다. 화자인식 시스템의 성능향상을 위해서는 음운정보보다는 화자의 개인성 정보가 잘 반영되도록 하는 것이 중요하다. 본 논문에서는 HMM(hidden Maxkov model)을 기반으로 한 문장종속형 화자확인 시스템의 성능향상을 위한 관측확률 가중 반법을 제안한다. 먼저 주어진 학습자료에서 화자의 개인성이 잘 반영된 프레임들을 예측한다. 임의의 입력음성에 대한 인식점수는 화자의 특징이 잘 반영된 프레임의 관측확률에 가중치를 주어 구한다. 제안한 방법을 적용한 결과 기존의 우도비(likelihood ratio) 정규화 점수를 사용하는 방법에 비해 동일오류율(EER, equal error rate)을 $2\~3\%$정도 줄여 인식율 향상을 얻을 수 있었다.

  • PDF

화자인식을 위한 관측신뢰도 기반 변형된 HMM 디코더 (Modified HMM Decoder based on Observation Confidence for Speaker Identification)

  • ;민소희;김진영;나승유
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.443-446
    • /
    • 2007
  • 음성신호는 잡음 또는 전송 채널의 특성에 의하여 왜곡되고, 왜곡된 음성은 음성인식 및 화자인식의 성능을 크게 저하시킨다. 이러한 문제점을 극복하기 위해 본 논문에서는 Gaussian mixture model (GMM)에 적용된 신호대잡음비 (SNR)기반 신뢰도 가중 기법[1][2]을 Hidden Markov model(HMM) 디코더에 변형하여 적용하였다. HMM 디코더 변형은 HMM 상태별 관측확률을 논문 [1]에서 제시된 신뢰도로 가중함으로써 이루어졌다. 제안한 방법의 성능을 확인하기 위해 ETRI에서 만든 한국어 화자인식용 휴대폰 음성 DB를 사용하여 문맥종속 화자식별 실험을 하였다. 실험결과 기존 방법에 비해 제안한 방법의 화자인식률이 크게 향상됨을 확인 할 수 있었다.

  • PDF

개인성 정보의 가중화에 의한 화자확인의 성능향상 (Performance Improvement of Speaker Verification System By Speaker Information Weighting)

  • 김세현;장길진;오영환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.539-541
    • /
    • 1999
  • 기존의 문장종속형 화자인식 기법에서는 음성 신호의 각 분석 프레임이 같은 기여도를 갖는 것으로 간주한다. 화자인식 시스템의 성능향상을 위해서는 음운정보보다는 인식의 단서가 되는 화자의 개인성 정보가 잘 반영되도록 하는 것이 중요하다. 본 논문에서는 HMM (hidden Markov model)을 기반으로 한 문장종속형 화자확인 시스템의 성능향상을 위해 프레임별로 인식의 단서가 되는 개인성 정보의 양을 측정하는 방법과, 이를 화자확인 시스템에 적용하는 기법을 제안한다. 제안한 방법을 적용한 결과, 기존의 우도비(likelihood ratio) 정규화 점수를 사용하는 방법에 비해 동일오류율(EER; equal error rate)을 평균 34% 감소시켜 인식율 향상을 얻을 수 있다.

  • PDF

화자 확인 시스템을 위한 적응적 모델 갱신과 사전 문턱치 결정에 관한 연구 (A Study on Adaptive Model Updating and a Priori Threshold Decision for Speaker Verification System)

  • 진세훈;이재희;강철호
    • 한국음향학회지
    • /
    • 제19권5호
    • /
    • pp.20-26
    • /
    • 2000
  • 화자 확인시스템에서 화자의 장기간 음성 변동에 대처하기 위해서는 작은 양의 데이터로써 화자 확인을 위한 HMM(hidden Markov model) 파라미터 갱신과 사전 문턱치 결정이 중요한 요소이다. 본 연구에서는 화자내 변이(mea-speaker variation)에 적응하는 모델 갱신방법과 이에 따른 문턱치 적응에 관한 방법을 제안한다. 제안하는 방법은 분기간 화자내 변이로 발생할 수 있는 오인식율을 Baum-Welch re-estimation을 통해 현재 화자 모델 파라미터에 새로운 음성 데이터를 적응시킴으로써 감소시킨다. 본 논문에서 제안하는 사전 문턱치 결정 방법은 기존의 월드 모델(world model) 방법과 군중 모델(cohort model) 방법의 하이브리드 형태로써 실험적으로 결정된다. 실험에 의해 모델 갱신을 하지 않은 경우보다 제안하는 모델 갱신방법의 화자 인식율이 우수함을 확인하였다. 또한, 사후 문턱치 결정에 의한 인식율과 제안한 사전 문턱치 결정에 의한 인식율의 차이가 근소함을 확인하였다.

  • PDF

강인한 화자 확인 시스템을 위한 World 모델을 이용한 켑스트럼 정규화 연구 (A Study of Cepstrum Normalization Using World Model for Robust Speaker Verification)

  • 김유진;정재호
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
    • /
    • pp.55-58
    • /
    • 2000
  • 본 논문에서는 화자 확인 시스템의 등록과 확인 과정의 채널 환경 불일치로 성능이 저하되는 문제를 해결하기 위한 새로운 정규화 방법에 대해 설명한다. 제안된 방법은 첫째, 입력 음성으로부터 효과적으로 채널을 추정$\cdot$보상하고 둘째, 스코어 정규화 과정에서 사칭자 모델로서 사용되는 world모델과의 차이를 채널 추정 및 화자 모델 생성에 효과적으로 사용하는 것을 목표로 한다. 이를 위해 입력 음성의 켑스트럼과 HMM world 모델의 파라메터인 평균 켑스트럼과의 차이를 통해 음소열에 종속적인 채널 켑스트럼인 Phone-Dependent Difference Cepstrum을 추정한다. 한편 입력 음성의 음소열은 world모델의 스코어를 얻는 과정에서 함께 얻어질 수 있다. 채널 추정 실험 결과를 통해서 가장 일반적인 채널 정규화방법인 CMS에 의해 추정된 채널에 비해 실제 채널과 유사하며 화자 고유의 특성을 왜곡시키지 않는 채널 추정이 가능함을 확인할 수 있었다.

  • PDF

최적경로와 가중직교인자를 이용한 화자인식 (Speaker Recognition Using Optimal Path and Weighted Orthogonal Parameters)

  • 남기환;배철수
    • 한국정보통신학회논문지
    • /
    • 제7권7호
    • /
    • pp.1539-1544
    • /
    • 2003
  • 최근 많은 연구자들이 KLT를 이용한 통계적 처리방법으로 화자인식을 수행하고 있으나, 통계적 처리방법의 개인성 포함정도와 음성의 동적인 발성속도는 화자인식률의 저하요인이 되고 있다. 본 연구에서는 각 화자의 직교인자에 개인성을 강조하기 위하여 화자의 고유치를 가중치로 한 가중직교 인자와 음성의 동적인 시간 특성을 정규화 하는 DTW의 최적경로를 이용한 화자인식방법을 연구하였다. 이 방법을 확인하기 위하여 종래의 통계적 처리에 의한 화자인식, 최적경로와 가중직교인자를 이용한 화자인식의 결과를 비교한 결과, 종래의 방법보다 우수한 화자인식률을 얻어 그 유효성을 확인하였다.

연속숫자 음성인식에서 화자 적응에 관한 연구 (A Study on Speaker Adaptation in Continuous Digits Speech Recognition)

  • 최광표
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.319.2-322
    • /
    • 1998
  • 본 논문에서는 반음절 단위 HMM을 이용한 연속 숫자 음성인식 시스템의 2단계로 이루어지는 화자 적응 알고리즘을 수행하였다. 음성인식 시스템에서 사용되는 훈련데이터의 양이 많더라도 발성속도, 발성크기 등의 화자 발성 습관에 따라 화자독립 음성인식 시스템에서는 많은 문제점들이 발생하게 된다. 불특정 화자를 대상으로 한 음성 인식에 있어서 개인차에 의한 변동을 대처하는 방법으로 유효한 음향적 특성을 추출하기 위해 스펙트럼의 동적인(Dynamic) 특성을 주로 이용하고 있다. 따라서 본 논문에서는 화자 적을 기법의 하나인 frequency warped spectral matching 방법을 연속숫자 음성 인식시스템에 적용하였으며, 이때 인식에 의한 적절한 화자별 스케일링 계수 선정 방법을 수행하여 오인식률이 감소함을 확인하였다.

  • PDF

최적경로와 가중직교인자를 이용한 화자인식 (Speaker Recognition Using Optimal Path and Weighted Orthogonal Parameters)

  • 박승규;배철수
    • 한국음향학회지
    • /
    • 제11권2호
    • /
    • pp.68-72
    • /
    • 1992
  • 최근, 많은 연구자들이 KLT를 이용한 통계적 처리방법으로 화자인식을 수행하고 있으나, 통계적 처리방법의 개인성 포함정도와 음성의 동적인 발성속도는 화자인식율의 저하요인이 되고 있다. 본연구에서는 각 화자의 직교인자에 개인성을 강조하기 위하여 화자의 고유치를 가중치로 한 가중직교인자와 음성의 동적인 시간특성을 정규화하는 DTW의 최적경로를 이용한 화자인식방법을 연구하였다. 이방법을 확인하기 위하여 종래의 통계적 처리에 의한 화자인식, 최적경로와 최적경로와 가중직교인자를 이용한 화자인식의 결과를 비교한 결과, 종래의 방법보다 우수한 화자인식율을 얻어 그 유효성을 확인하였다.

  • PDF

문장종속 화자확인 시스템을 위한 개선된 군집화 알고리즘에 관한 연구 (A Study on Modified Clustering Algorithm for Text-Dependent Speaker Verification System)

  • 강철호;정희석
    • 한국음향학회지
    • /
    • 제23권7호
    • /
    • pp.548-553
    • /
    • 2004
  • 본 연구에서는 집단화 오차를 최소로 하기위해 개선된 LBG 알고리즘을 제안한다. 기존의 LBG 알고리즘은 화자확인 시스템에 적용시 소량의 학습 데이터의 분포가 가지는 특수성으로부터 기인하는 문제점들이 발생한다. 즉, 개인별 특성을 무시하고 항상 일정한 크기의 코드북을 생성해야 하는데서 기인하는 군집화 오류와 분할할 (Splitting) 방향을 잘못 선택하면서 발생하는 집단화의 오류가 전체 화자 인식율 저하의 원인이 된다. 따라서, 본 연구에서는 개인별로 최적의 크기를 가지는 가변길이 코드북 생성 기법과 중심값으로부터 최외곽의 멤버 벡터 인덱스를 찾고 다시 최외곽 멤버 벡터에서 가장 먼 멤버 벡터 인덱스를 찾음으로써 분할할 방향을 인위적으로 지정해 주는 개선된 군집화 알고리즘을 제안한다. 실험 결과, 제안된 방식을 적용한 화자확인 시스템이 기존의 LBG알고리즘을 사용한 시스템보다 오거부율(FR)은 3.165%, 오수락율 (FA)는 0.06%씩 각각 향상 되었다.