기존의 전대역(Full-Band)에서 특징 파라미터를 추출하는 화자 확인(Speaker Verification) 시스템은 저대역이나 고대역에서 화자 정보의 특징이 제거되기 쉽다. 또한, 주파수 스펙트럼에 부분적으로 오염이 되는 경우, 특징 파라미터를 왜곡시켜 화자 확인 시스템의 성능을 저하시킨다. 본 논문에서는 이러한 문제점을 해결하기 위해 다중대역 공분산 모델(Covariance Model)을 제안한다. 제안한 방법은 주파수 영역에서 전대역을 여러 개의 부대역(Sub-Band)으로 분할하고, 부대역별로 독립적으로 특징 파라미터를 추출하여 공분산 모델을 구한다. 제안된 방법의 성능 확인을 위하여 공분산 모델 간의 거리를 측정하는 화자 확인 실험을 하였다. 잡음 환경에서 기존의 방법인 전대역에 기반한 공분산 모델과 제안한 방법을 비교 분석한 결과, 제안한 방법이 기존 방법보다 $2\%$정도 성능이 향상되었다. 또한, 제안된 방법은 전대역에 기반한 파라미터 차원 수를 다중대역의 개수로 분할하여 사용하므로 계산량의 감소와 저장 공간면에서 효율적이다.
기존의 문장종속형 화자인식 방법들은 대부분 음성인식에서 사용되는 방법을 그대로 적용하기 때문에, 화자의 개인성 정보보다 음운정보에 더 민감한 단점이 있다. 화자인식 시스템의 성능향상을 위해서는 음운정보보다는 화자의 개인성 정보가 잘 반영되도록 하는 것이 중요하다. 본 논문에서는 HMM(hidden Maxkov model)을 기반으로 한 문장종속형 화자확인 시스템의 성능향상을 위한 관측확률 가중 반법을 제안한다. 먼저 주어진 학습자료에서 화자의 개인성이 잘 반영된 프레임들을 예측한다. 임의의 입력음성에 대한 인식점수는 화자의 특징이 잘 반영된 프레임의 관측확률에 가중치를 주어 구한다. 제안한 방법을 적용한 결과 기존의 우도비(likelihood ratio) 정규화 점수를 사용하는 방법에 비해 동일오류율(EER, equal error rate)을 $2\~3\%$정도 줄여 인식율 향상을 얻을 수 있었다.
음성신호는 잡음 또는 전송 채널의 특성에 의하여 왜곡되고, 왜곡된 음성은 음성인식 및 화자인식의 성능을 크게 저하시킨다. 이러한 문제점을 극복하기 위해 본 논문에서는 Gaussian mixture model (GMM)에 적용된 신호대잡음비 (SNR)기반 신뢰도 가중 기법[1][2]을 Hidden Markov model(HMM) 디코더에 변형하여 적용하였다. HMM 디코더 변형은 HMM 상태별 관측확률을 논문 [1]에서 제시된 신뢰도로 가중함으로써 이루어졌다. 제안한 방법의 성능을 확인하기 위해 ETRI에서 만든 한국어 화자인식용 휴대폰 음성 DB를 사용하여 문맥종속 화자식별 실험을 하였다. 실험결과 기존 방법에 비해 제안한 방법의 화자인식률이 크게 향상됨을 확인 할 수 있었다.
기존의 문장종속형 화자인식 기법에서는 음성 신호의 각 분석 프레임이 같은 기여도를 갖는 것으로 간주한다. 화자인식 시스템의 성능향상을 위해서는 음운정보보다는 인식의 단서가 되는 화자의 개인성 정보가 잘 반영되도록 하는 것이 중요하다. 본 논문에서는 HMM (hidden Markov model)을 기반으로 한 문장종속형 화자확인 시스템의 성능향상을 위해 프레임별로 인식의 단서가 되는 개인성 정보의 양을 측정하는 방법과, 이를 화자확인 시스템에 적용하는 기법을 제안한다. 제안한 방법을 적용한 결과, 기존의 우도비(likelihood ratio) 정규화 점수를 사용하는 방법에 비해 동일오류율(EER; equal error rate)을 평균 34% 감소시켜 인식율 향상을 얻을 수 있다.
화자 확인시스템에서 화자의 장기간 음성 변동에 대처하기 위해서는 작은 양의 데이터로써 화자 확인을 위한 HMM(hidden Markov model) 파라미터 갱신과 사전 문턱치 결정이 중요한 요소이다. 본 연구에서는 화자내 변이(mea-speaker variation)에 적응하는 모델 갱신방법과 이에 따른 문턱치 적응에 관한 방법을 제안한다. 제안하는 방법은 분기간 화자내 변이로 발생할 수 있는 오인식율을 Baum-Welch re-estimation을 통해 현재 화자 모델 파라미터에 새로운 음성 데이터를 적응시킴으로써 감소시킨다. 본 논문에서 제안하는 사전 문턱치 결정 방법은 기존의 월드 모델(world model) 방법과 군중 모델(cohort model) 방법의 하이브리드 형태로써 실험적으로 결정된다. 실험에 의해 모델 갱신을 하지 않은 경우보다 제안하는 모델 갱신방법의 화자 인식율이 우수함을 확인하였다. 또한, 사후 문턱치 결정에 의한 인식율과 제안한 사전 문턱치 결정에 의한 인식율의 차이가 근소함을 확인하였다.
본 논문에서는 화자 확인 시스템의 등록과 확인 과정의 채널 환경 불일치로 성능이 저하되는 문제를 해결하기 위한 새로운 정규화 방법에 대해 설명한다. 제안된 방법은 첫째, 입력 음성으로부터 효과적으로 채널을 추정$\cdot$보상하고 둘째, 스코어 정규화 과정에서 사칭자 모델로서 사용되는 world모델과의 차이를 채널 추정 및 화자 모델 생성에 효과적으로 사용하는 것을 목표로 한다. 이를 위해 입력 음성의 켑스트럼과 HMM world 모델의 파라메터인 평균 켑스트럼과의 차이를 통해 음소열에 종속적인 채널 켑스트럼인 Phone-Dependent Difference Cepstrum을 추정한다. 한편 입력 음성의 음소열은 world모델의 스코어를 얻는 과정에서 함께 얻어질 수 있다. 채널 추정 실험 결과를 통해서 가장 일반적인 채널 정규화방법인 CMS에 의해 추정된 채널에 비해 실제 채널과 유사하며 화자 고유의 특성을 왜곡시키지 않는 채널 추정이 가능함을 확인할 수 있었다.
최근 많은 연구자들이 KLT를 이용한 통계적 처리방법으로 화자인식을 수행하고 있으나, 통계적 처리방법의 개인성 포함정도와 음성의 동적인 발성속도는 화자인식률의 저하요인이 되고 있다. 본 연구에서는 각 화자의 직교인자에 개인성을 강조하기 위하여 화자의 고유치를 가중치로 한 가중직교 인자와 음성의 동적인 시간 특성을 정규화 하는 DTW의 최적경로를 이용한 화자인식방법을 연구하였다. 이 방법을 확인하기 위하여 종래의 통계적 처리에 의한 화자인식, 최적경로와 가중직교인자를 이용한 화자인식의 결과를 비교한 결과, 종래의 방법보다 우수한 화자인식률을 얻어 그 유효성을 확인하였다.
본 논문에서는 반음절 단위 HMM을 이용한 연속 숫자 음성인식 시스템의 2단계로 이루어지는 화자 적응 알고리즘을 수행하였다. 음성인식 시스템에서 사용되는 훈련데이터의 양이 많더라도 발성속도, 발성크기 등의 화자 발성 습관에 따라 화자독립 음성인식 시스템에서는 많은 문제점들이 발생하게 된다. 불특정 화자를 대상으로 한 음성 인식에 있어서 개인차에 의한 변동을 대처하는 방법으로 유효한 음향적 특성을 추출하기 위해 스펙트럼의 동적인(Dynamic) 특성을 주로 이용하고 있다. 따라서 본 논문에서는 화자 적을 기법의 하나인 frequency warped spectral matching 방법을 연속숫자 음성 인식시스템에 적용하였으며, 이때 인식에 의한 적절한 화자별 스케일링 계수 선정 방법을 수행하여 오인식률이 감소함을 확인하였다.
최근, 많은 연구자들이 KLT를 이용한 통계적 처리방법으로 화자인식을 수행하고 있으나, 통계적 처리방법의 개인성 포함정도와 음성의 동적인 발성속도는 화자인식율의 저하요인이 되고 있다. 본연구에서는 각 화자의 직교인자에 개인성을 강조하기 위하여 화자의 고유치를 가중치로 한 가중직교인자와 음성의 동적인 시간특성을 정규화하는 DTW의 최적경로를 이용한 화자인식방법을 연구하였다. 이방법을 확인하기 위하여 종래의 통계적 처리에 의한 화자인식, 최적경로와 최적경로와 가중직교인자를 이용한 화자인식의 결과를 비교한 결과, 종래의 방법보다 우수한 화자인식율을 얻어 그 유효성을 확인하였다.
본 연구에서는 집단화 오차를 최소로 하기위해 개선된 LBG 알고리즘을 제안한다. 기존의 LBG 알고리즘은 화자확인 시스템에 적용시 소량의 학습 데이터의 분포가 가지는 특수성으로부터 기인하는 문제점들이 발생한다. 즉, 개인별 특성을 무시하고 항상 일정한 크기의 코드북을 생성해야 하는데서 기인하는 군집화 오류와 분할할 (Splitting) 방향을 잘못 선택하면서 발생하는 집단화의 오류가 전체 화자 인식율 저하의 원인이 된다. 따라서, 본 연구에서는 개인별로 최적의 크기를 가지는 가변길이 코드북 생성 기법과 중심값으로부터 최외곽의 멤버 벡터 인덱스를 찾고 다시 최외곽 멤버 벡터에서 가장 먼 멤버 벡터 인덱스를 찾음으로써 분할할 방향을 인위적으로 지정해 주는 개선된 군집화 알고리즘을 제안한다. 실험 결과, 제안된 방식을 적용한 화자확인 시스템이 기존의 LBG알고리즘을 사용한 시스템보다 오거부율(FR)은 3.165%, 오수락율 (FA)는 0.06%씩 각각 향상 되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.