• 제목/요약/키워드: 화자 전환 검출

검색결과 2건 처리시간 0.014초

화자 겹침을 고려한 화자 전환 검출 시스템 제안 (Proposal of speaker change detection system considering speaker overlap)

  • 박지수;윤영선;차신;박전규
    • 한국음향학회지
    • /
    • 제40권5호
    • /
    • pp.466-472
    • /
    • 2021
  • 화자 전환 검출은 대화 중에 발성 화자가 다른 사람으로 바뀌는 시점을 검출하는 것을 의미한다. 이 과정에서 화자 중복, 화자 정보 표기의 부정확성, 데이터 불균형 등으로 화자가 바뀌는 순간을 검출하는 데 어려움이 발생한다. 본 논문에서는 이러한 문제를 해결하기 위해 음성 인식에 널리 사용되는 TIMIT 데이터를 가공하여 충분한 양의 훈련 데이터를 얻었으며, 화자가 겹치는지를 파악한 후에 화자 전환 여부를 판단하였다. 본 논문에서는 화자 겹침을 고려한 화자 전환 검출 시스템을 구축하기 위하여 다양한 접근법을 사용하여 성능을 평가하고 검증했다. 그 결과 화자 겹칩 영역을 제거하기 위해 X-Vector 구조와 유사한 형태의 검출 시스템과 화자 전환 검출 시스템을 모델링하기 위한 Bi-LSTM 모델을 제안하였다. 실험 결과 기준 시스템보다 상대적으로 각각 4.6 %, 13.8 % 성능 향상을 확인하였다. 또한, 실험 결과를 기반으로 텍스트 정보와 화자 정보 등을 고려한다면 좀 더 강인한 화자 전환 검출 시스템을 구축할 수 있을 것으로 판단한다.

화자 겹침 검출 시스템의 프레임워크 전환 연구 (Framework Switching of Speaker Overlap Detection System)

  • 김회남;박지수;차신;손경아;윤영선;박전규
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권1호
    • /
    • pp.101-113
    • /
    • 2021
  • 본 논문에서는 화자 겹침 시스템을 소개하고 인공지능 분야에서 널리 사용되는 프레임워크에서 이미 구축된 시스템을 전환하는 과정을 고찰하고자 한다. 화자 겹침은 대화 과정에서 두 명 이상의 화자가 동시에 발성하는 것을 말하며, 사전에 화자 겹침을 탐지하여 음성인식이나 화자인식의 성능 저하를 예방할 수 있으므로 많은 연구가 진행되고 있다. 최근 인공지능을 이용한 다양한 응용 시스템의 활용도가 높아지면서 인공지능 프레임워크 (framework) 간의 전환이 요구되고 있다. 그러나 프레임워크 전환 시 각 프레임워크의 고유 특성에 의하여 성능 저하가 관찰되고 있으며 이는 프레임워크 전환을 어렵게 하고 있다. 본 논문에서는 케라스 (Keras) 기반 화자 겹침 시스템을 파이토치 (pytorch) 시스템으로 전환하는 과정을 기술하고 고려해야 할 구성 요소들을 정리하였다. 프레임워크 전환 결과 기존 케라스 기반 화자 겹침 시스템보다 파이토치로 전환된 시스템에서 더 좋은 성능을 보여 체계적인 프레임워크 전환의 기본 연구로서 가치를 지닌다고 할 수 있다.