• Title/Summary/Keyword: 화자 식별

Search Result 105, Processing Time 0.022 seconds

Pitch Period Detection Algorithm Using Rotation Transform of AMDF (AMDF의 회전변환을 이용한 피치 주기 검출 알고리즘)

  • Seo, Hyun-Soo;Bae, Sang-Bum;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.1019-1022
    • /
    • 2005
  • As recent information communication technology is rapidly developed, a lot of researches related to speech signal processing have been processed. So pitch period is applied as important factor to many application fields such as speech recognition, speaker identification, speech analysis and synthesis. Therefore, many algorithms related to pitch detection have been proposed in time domain and frequency domain and AMDF(average magnitude difference function) which is one of pitch detection algorithms in time domain chooses time interval from valley to valley as pitch period. But, in selection of valley point to detect pitch period, complexity of the algorithm is increased. So in this paper we proposed pitch detection algorithm using rotation transform of AMDF, that taking the global minimum valley point as pitch period and established a threshold about the phoneme in beginning portion, to exclude pitch period selection. and compared existing methods with proposed method through simulation.

  • PDF

A Study on the Robust Pitch Period Detection Algorithm in Noisy Environments (소음환경에 강인한 피치주기 검출 알고리즘에 관한 연구)

  • Seo Hyun-Soo;Bae Sang-Bum;Kim Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.481-484
    • /
    • 2006
  • Pitch period detection algorithms are applied to various speech signal processing fields such as speech recognition, speaker identification, speech analysis and synthesis. Furthermore, many pitch detection algorithms of time and frequency domain have been studied until now. AMDF(average magnitude difference function) ,which is one of pitch period detection algorithms, chooses a time interval from the valley point to the valley point as the pitch period. AMDF has a fast computation capacity, but in selection of valley point to detect pitch period, complexity of the algorithm is increased. In order to apply pitch period detection algorithms to the real world, they have robust prosperities against generated noise in the subway environment etc. In this paper we proposed the modified AMDF algorithm which detects the global minimum valley point as the pitch period of speech signals and used speech signals of noisy environments as test signals.

  • PDF

Analysis of unfairness of artificial intelligence-based speaker identification technology (인공지능 기반 화자 식별 기술의 불공정성 분석)

  • Shin Na Yeon;Lee Jin Min;No Hyeon;Lee Il Gu
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • Digitalization due to COVID-19 has rapidly developed artificial intelligence-based voice recognition technology. However, this technology causes unfair social problems, such as race and gender discrimination if datasets are biased against some groups, and degrades the reliability and security of artificial intelligence services. In this work, we compare and analyze accuracy-based unfairness in biased data environments using VGGNet (Visual Geometry Group Network), ResNet (Residual Neural Network), and MobileNet, which are representative CNN (Convolutional Neural Network) models of artificial intelligence. Experimental results show that ResNet34 showed the highest accuracy for women and men at 91% and 89.9%in Top1-accuracy, while ResNet18 showed the slightest accuracy difference between genders at 1.8%. The difference in accuracy between genders by model causes differences in service quality and unfair results between men and women when using the service.

Types and Functions of English Hedges at a syntax-pragmatics Interface (통사화용의 접합면에서 본 영어 헤지표현의 유형과 기능)

  • Hong, Sungshim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.381-388
    • /
    • 2020
  • This paper discusses English Hedges or Hedging Expressions on the basis of their morphosyntactic-pragramatic properties within the perspective of sociolinguistics. The term, 'Hedges' for the past decades since Lakoff(1973), has received little attention from the English grammar circles such as morphosyntax and the generative grammar theories. This paper presents a more comprehensive approach to the identification, distributions, functions, and the morphosyntactic properties of English Hedges. The earlier research on English Hedges in the 70's show that hedges are metalinguistic or mitadiscourse expressions which constitute a means for executing Politeness strategy in pragmatics. Nonetheless, research from the interface of syntactic-pragmatics has been scarce. This article suggests a more complex body of English hedges that have not been extensively discussed in the literature. Additionally, their configurational domain is to be proposed as part of the PolP with [±hedged] above CP+ (or CP beyond). The ramifications of the current study are suggested in terms of comparative linguistics, EFL/ESL studies of English for global communication, and pragmatics-sensitive machine translation studies in the forseeable future.

Speech Activity Decision with Lip Movement Image Signals (입술움직임 영상신호를 고려한 음성존재 검출)

  • Park, Jun;Lee, Young-Jik;Kim, Eung-Kyeu;Lee, Soo-Jong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.25-31
    • /
    • 2007
  • This paper describes an attempt to prevent the external acoustic noise from being misrecognized as the speech recognition target. For this, in the speech activity detection process for the speech recognition, it confirmed besides the acoustic energy to the lip movement image signal of a speaker. First of all, the successive images are obtained through the image camera for PC. The lip movement whether or not is discriminated. And the lip movement image signal data is stored in the shared memory and shares with the recognition process. In the meantime, in the speech activity detection Process which is the preprocess phase of the speech recognition. by conforming data stored in the shared memory the acoustic energy whether or not by the speech of a speaker is verified. The speech recognition processor and the image processor were connected and was experimented successfully. Then, it confirmed to be normal progression to the output of the speech recognition result if faced the image camera and spoke. On the other hand. it confirmed not to output of the speech recognition result if did not face the image camera and spoke. That is, if the lip movement image is not identified although the acoustic energy is inputted. it regards as the acoustic noise.