• Title/Summary/Keyword: 화염 선단전파

Search Result 17, Processing Time 0.026 seconds

Interacting Effects of an Ultrasonic Standing-wave on the Propagation Behavior and Structural Stabilization of Propane/Air Premixed Flame (프로판/공기 예혼합화염의 전파거동 및 구조안정화에 대한 정상초음파의 간섭효과)

  • Lee, Sang Shin;Seo, Hang Seok;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • An experimental study has been conducted to scrutinize into the influence of ultrasonic standing wave on the propagating behavior and structural stabilization of propane/air premixed flame at various equivalence ratios in half-open rectangular duct. Evolutionary features of the flame fronts are caught by high-speed images, and the variation of flame structure and local flame velocities along the propagation are analyzed. It is revealed that the propagation velocity agitated by the ultrasonic standing wave is greater than that without the agitation: the velocity enhancement diminishes as the equivalence ratio approaches the stoichiometric. Influence of standing wave on the flame overwhelms that of the buoyancy which slants the flame front towards top of the duct, and thus the standing wave contributes to the structural stabilization of propane/air premixed flame.

Agitation Effects of an Ultrasonic Standing Wave on the Dynamic Behavior of Methane/Air Premixed Flame (메탄/공기 예혼합화염의 동역학적 거동에 대한 정상초음파의 교반 효과)

  • Seo, Hang-Seok;Lee, Sang-Shin;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.318-323
    • /
    • 2012
  • This study is conducted to scrutinize agitation effects of an ultrasonic standing wave on the dynamic behavior of methane/air premixed flame. The propagating flame is caught by high-speed schlieren images, through which flame front and local flame velocity are analyzed and obtained, too. It is revealed that the propagation velocity with ultrasonic standing wave is larger than the case without excitation except around the flammability limits. Also, vertical locations of distortions and depth of dents of the front are constant, unless the ultrasonic standing wave characteristics are not changed.

  • PDF

Effects of an Ultrasonic Standing-wave Field on the Behavior of Methane/Air Premixed Flame (정상초음파장이 메탄/공기 예혼합화염의 거동에 미치는 영향)

  • Seo, Hang-Seok;Lee, Sang-Shin;Kim, Jeong-Soo;Lee, Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.303-306
    • /
    • 2011
  • An experimental study has been conducted to investigate the effects of an ultrasonic standing-wave field to the behavior of methane/air premixed flame. Visualization technique utilizing the schlieren method was employed for the observation of premixed flame behavior. The shape of flame front and local flame velocity were measured according to the variation of reactants pressure and chamber opening/closing condition. The flame front was distorted and severely deformed to a lotus-type flame by the interaction of ultrasonic standing-wave and the reflection wave coming from an end wall of reactor.

  • PDF

Structural Variation of Methane/Air Premixed Flame Caused by the Intervention of Ultrasonic Standing-wave (정상 초음파장의 간섭에 의한 메탄/공기 예혼합화염의 구조 변이)

  • Seo, Hang-Seok;Lee, Sang-Shin;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.1-6
    • /
    • 2011
  • An experimental study has been conducted to scrutinize into the influence of ultrasonic standing wave field on the variation of methane/air premixed flame structure. Visualization technique utilizing the Schlieren method is employed for the observation of premixed flame propagation. The shape of flame front and local flame velocity are measured according to the variation of reactants pressure and chamber opening/closing condition. The flame fronts affected by the standing wave are clearly distorted but the vertical locations of frontal dents do not undergo any appreciable change. The influence of standing wave on the flame front becomes more prominent as the flame propagates downward. It is found that the propagation velocity of flame front with excitation of standing wave is greater than the case without the excitation. It is eventually revealed that the flame is deformed to lotus-shaped one by the vivid interaction of ultrasonic standing-wave with the reflected wave coming from the right side.

A Structural Behavior of the Propane/Air Premixed Flame Interacting with an Ultrasonic Standing-wave (정상초음파가 개재하는 프로판/공기 예혼합화염의 구조 거동)

  • Lee, Sang-Shin;Seo, Hang-Seok;Kim, Jeong-Soo;Lee, Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.294-299
    • /
    • 2012
  • An investigation into the influence of ultrasonic standing wave on the structural behavior of propane/air premixed flame has been made to get a clue to the combustion reaction acceleration and combustion instability, as well. Visualization technique utilizing the Schlieren method was employed for the observation of structural variation of the premixed flame. The flame shape and propagation velocity were measured according to the variation of equivalence ratio. It was found that the standing wave distorted the flame front and expedited a transition to the flame with turbulent nature.

  • PDF

Effects of Driving Frequency on Propagation Characteristics of Methane-Air Premixed Flame Influenced by Ultrasonic Standing Wave (정상초음파의 교란을 받는 메탄-공기 예혼합화염의 전파특성에 대한 초음파 구동 주파수의 영향)

  • Bae, Dae Seok;Seo, Hang Seok;Kim, Jeong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • An experimental study was conducted to scrutinize the influence of the frequency of an ultrasonic standing wave on the variation in the behavior of a methane-air premixed flame. The evolutionary features of the propagating flame were captured by a high-speed camera, and the macroscopic flame behavior, including the flame structure and local velocities, was investigated in detail using a post-processing analysis of the high-speed images. It was found that a structural variation and propagation-velocity augmentation of the methane-air premixed flame were caused by the intervention of the ultrasonic standing wave, which enhanced the combustion reaction. Conclusive evidence for the dependency of the flame behaviors on the driving frequency of the ultrasonic standing wave and equivalence ratio of the reactants is presented.

Study on Flame Oscillations in Laminar Lift-off Butane Flames Diluted with Nitrogen (질소 희석된 부탄 부상화염에 있어서 화염진동에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.729-738
    • /
    • 2010
  • The characteristics of lifted butane flames diluted with nitrogen have been investigated experimentally in order to elucidate the mechanism of individual flame oscillation modes. Flame oscillations in laminar free-jet lift-off flames are classified into the following five regimes: a stabilized lift-off regime (I), a heat-loss-induced oscillation (II), a buoyancy-induced oscillation along with a heat-loss-induced oscillation (III), a combined form of an oscillation prior to blow-out and a heat-loss-induced oscillation (IV), and a combination of an oscillation prior to blow-out and a buoyancy-induced oscillation along with a heat-loss-induced oscillation (V). The characterization of the individual flame oscillations modes are presented and discussed using Strouhal numbers and their relevant parameters by the analysis of the power spectrum for temporal variation of the lift-off height.

Study of Characteristics of Self-Excitation in Lifted Laminar Free-Jet Propane Flames Diluted with Nitrogen (질소 희석된 프로판 자유제트 층류부상화염에 있어서 화염 자기진동 특성에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.399-408
    • /
    • 2010
  • The characteristics of lifted laminar propane flames diluted with nitrogen have been investigated experimentally to elucidate self-excitation and the effects of flame curvature. Flame oscillation modes are classified as follows: oscillation induced by heat loss, a combination of oscillations induced by heat loss and buoyancy, and a combination of the oscillations induced by heat loss and diffusive thermal instability. It is shown that the oscillation induced only by heat loss is not relevant to the diffusive thermal instability and hydrodynamic instability caused by buoyancy; this oscillation is observed under all lift-off flame conditions irrespective of the fuel Lewis number. These experimental evidences are displayed through the analysis of the power spectrum for the temporal variation of lift-off height. The possible mechanism of the oscillation induced by heat loss is also discussed.

Frequency-Equivalence Ratio Correlation Analysis of Methane-Air Premixed Flame Influenced by Ultrasonic Standing Wave (II) (정상초음파의 영향을 받는 메탄-공기 예혼합화염의 주파수-당량비 상관도 분석(II))

  • Kim, Min Sung;Bae, Dae Seok;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.45-51
    • /
    • 2015
  • An experimental study was performed for the analysis of frequency-equivalence ratio correlation in the methane-air premixed flame influenced by ultrasonic standing wave. The propagating flame was caught by high-speed Schlieren photography, and the variation of flame-behavior including the flame structure was investigated in detail employing a post-processing analysis of the high-speed images. It was found that a structural variation and propagation-velocity augmentation of the methane-air premixed flame by the intervention of ultrasonic standing wave were more caused off around the stoichiometry. Also, a dependency of the flame behaviors on the driving frequency and equivalence ratio of the reactants was confirmed.

Propagation Behavior and Structural Variation of C3H8-Air Premixed Flame with Frequency Change in Ultrasonic Standing Wave (정상초음파의 주파수 변화에 따른 C3H8-Air 예혼합화염의 전파거동 및 구조변이)

  • Lee, Sang Shin;Seo, Hang Seok;Kim, Jeong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.173-181
    • /
    • 2014
  • The propagation behavior and structural variation of a premixed propane/air flame with frequency change in an ultrasonic standing wave at various equivalence ratios were experimentally investigated using Schlieren photography and pressure measurement. The propagating flame was observed in high-speed Schlieren images, allowing local flame velocities of the moving front to be analyzed in detail. The study reveals that the distorted flame front and horizontal splitting in the burnt zone are due to the ultrasonic standing wave. Vertical locations of the distortion and horizontal stripes are intimately dependent on the frequency of the ultrasonic standing wave. In addition, the propagation velocity of the flame front bounded by the standing wave is greater than that of the flame front without acoustic excitation. As expected, the influence of the ultrasonic standing wave on premixed-flame propagation becomes more prominent as the frequency increases.