• Title/Summary/Keyword: 화염직경

Search Result 54, Processing Time 0.027 seconds

Characteristics of NOx Emission in a Swirl Flow in Nonpremixed Turbulent Hydrogen Jet with Coaxial Air (수소 난류 확산화염에서의 선회류에 의한 배기배출물 특성)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.275-282
    • /
    • 2010
  • The effect of swirl flow on NOx in a nonpremixed turbulent hydrogen jet with coaxial air was studied. The swirl vane angle was varied from $30^{\circ}$ to $90^{\circ}$. The fuel jet air velocity and coaxial air velocity were varied in an attached flame region as $u_F=85{\sim}160m/s$ and $u_A=7{\sim}14m/s$. The objective of the current study was to analyze the characteristics of nitrous oxide emission in a swirl flow and to propose a new parameter for EINOx scaling. The experimental results show that EINOx decreases with the swirl vane angle and increased with flame length. Further, EINOx scaling factors can be determined by considering the effective diameter ($d_{F,eff}$) in a far field concept. The EINOx increased in proportion to the flame residence time (${\sim}{\tau_R}^{1/2.8}$) and the global strain rate (${\sim}{S_G}^{1/2.8}$).

Combustion Characteristics of Land Fill Gas according to the Diameter of the Flame outlet of the Pre-chamber Spark Plug (예연소실 점화 플러그의 화염 분출구 직경에 따른 매립지가스의 연소 특성)

  • Kim, Kwonse;Jeon, Yeong-Cheol;Choi, Doo-Seuk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.111-117
    • /
    • 2021
  • This research work is to suggest the experimental results capable of solving an initial unsuitability of combustion and environment in a constant volume combustion chamber by using LFG(Land Fill Gas) which consists of 40% CO2 and 60% CH4. The experimental condition is set as 0.9~1.6 of air-fuel ratio, 3bar of combustion pressure, 25℃ of room temperature, methane for using gas, and 2.5~4.5 of Pre-chamber hole sizes. As a result, it can be seen that diffusion of initial flame is significantly increased by M3.0 model comparing with other one. The reason for the characteristics is that orifice effect is extremely improved by 0.9, 1.0, and 1.2 of air-fuel ratio comparing with other one. Consequently, this experiment is shown that M3.0 model is partially capable of improving combustion performance than a conventional ignition plug in case of applying to LFG with Pre-chamber design.

A Study on the Ignition Delay Effect in the Reduced-Scale Fire by Flame-Resistant Treated Plywood (유사 화재에 대한 방염처리 합판의 착화 지연효과 연구)

  • Lee, Seung-Hyun;Kim, Hwang-Jin;Lee, Sung-Eun;Oh, Kyu-Hyung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.180-187
    • /
    • 2011
  • 본 논문은 다중이용업소와 목조건축물에 자주 사용되는 미송합판에 방염처리를 하여 유사 화재를 구현하고, 그 화염 세기에 따른 방염의 실효성을 실험한 것이다. 방염처리를 하면 화재 시 가연물의 초기착화시간을 지연시켜 화재성장속도를 늦출 수 있고, 원활한 소화활동을 가능하게 해준다. 하지만 어느 정도 화재가 진행되어 화염이 거세지면, 45도 연소시험을 통한 방염기준을 충족하여도 그 성능을 기대하기 어렵다고 한다. 따라서 45도 연소시험 시 사용되는 65mm의 불꽃보다 큰 화염상태(초기착화 이후의 상태)에서 방염처리한 내장재(미송합판)의 방염성능이 유지되는지의 여부를 실제로 입증하고 그 근거를 뒷받침하기 위하여 본 연구를 시작하게 되었다. 실험에서는 화재의 규모(화염의 세기)를 달리하여 각기 다른 종류의 방염제로 방염 처리한 미송합판의 착화 시 화염온도, 복사열 유속 그리고 착화지연시간을 파악하였으며, 45도 연소시험과 관련하여 방염성능을 분석하였다. 45도 연소시험의 경우 실험에 사용한 방염 처리 합판은 방염성능 기준을 만족하는 것으로 나타났으며, 소규모 유사 화재로 직경 10cm 연소용기를 사용한 연소실험에서는 방염 처리한 합판의 착화지연시간이 평균적으로 대규모 유사 화재실험보다 길어 어느 정도는 방염효과를 갖는 것으로 나타났다. 하지만 대규모 유사 화재로 1단위 유류화재 연소용기를 사용한 연소실험의 경우 열방출율이 커 형성된 탄화막이 무분별하게 박리되고 발화가 일어나 착화지연시간의 차이를 구별하기 어려웠기 때문에 방염효과를 기대할 수 없었다.

  • PDF

Preliminary Combustion Tests in Bi-Swirl Coaxial Injectors Using Gaseous Methane/Gaseous Oxygen Propellants (기체메탄/기체산소 추진제를 이용한 동축 와류형 분사기에서의 예비 연소실험)

  • Hwang, Donghyun;Bak, Sujin;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.70-80
    • /
    • 2019
  • Combustion tests using six bi-swirl coaxial injectors with different shapes and recess lengths were performed in a model combustion chamber capable of flame visualization. By utilizing gaseous methane and gaseous oxygen instead of actual propellants, the effects of injector design and experimental conditions on the flame structure and combustion stability were analyzed. It was found that not only the experimental conditions but also the injector geometry such as the recess length and orifice diameter had a considerable influence on the combustion stability. In addition, it was confirmed that the heat release pattern changed with the occurrence of combustion instability.

Study on Heat-Loss-Induced Self-Excitation in Laminar Lifted Jet Flames (층류제트 부상화염에서 열손실에 의한 자기진동에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo;Bae, Dae-Seok;Yun, Jin-Han;Keel, San-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • We experimentally investigated lifted propane jet flames diluted with nitrogen to obtain flame-stability maps based on heat-loss-induced self-excitation. We found that heat-loss-induced self-excitations are caused by conductive heat loss from premixed flame branches to trailing diffusion flames as well as soot radiation. The conductive-heat-loss-induced self-excitation at frequencies less than 0.1 Hz is explained well by a suggested mechanism, whereas the oscillation of the soot region induces a self-excitation of lift-off height of the order of 0.1 Hz. The suggested mechanism is also verified from additive experiments in a room at constant temperature and humidity. The heat-loss-induced self-excitation is explained by the Strouhal numbers as a function of the relevant parameters.

Combustion Characteristics of Volume Variation of Torch in a CVCC (토치 점화 장치의 체적에 따른 연소특성 파악)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Choi, Chang-Hyeon;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.166-170
    • /
    • 2010
  • Six different size of torch-ignition device were applied in a constant volume combustion chamber for evaluating the effects of torch-ignition on combustion. The torch-ignition device was designed six different volumes and same orifice size. The combustion pressures were measured to calculate the mass burn fraction and combustion enhancement rate. In addition, the flame propagations were visualized by shadowgraph method for the qualitative comparison. The result showed that the combustion pressure and mass burn fraction were increased when using the torch ignition device. And the combustion duration were decreased. The combustion enhancement rates of torch-ignition cases were improved in comparison with conventional spark ignition. Finally, the visualization results showed that the torch-ignition device the torch-ignition induced faster burn than conventional spark ignition due to the earlier transition to turbulent flame and larger flame surface, during the initial stage. And the initial flame propagation was effected torch-ignition volume.

  • PDF

Numerical Study to Develop Low-NOx Multi-nozzle Burner in Rotary Kiln (로터리 킬른용 Low-NOx 다공노즐버너 개발을 위한 수치해석적 연구)

  • Ahn, Seok-Gi;Kim, Jin-Ho;Hwang, Min-Young;Kim, Gyu-Bo;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.130-140
    • /
    • 2014
  • Rotary kiln burner has been developed continuously to improve process efficiency and exhaust emission. In this study, the characteristics of the flame and exhaust emission were numerically analyzed according to the diameter of primary air nozzle, equivalent ratio of burner, and equivalent ratio at center and side nozzle for development of multi-nozzle burner in the COG(Coke Oven Gas) rotary kiln for sintering iron ore. The results indicated that the flame length and $NO_x$ emission increase, as the diameter of primary air nozzle and equivalent ratio of burner increase. And according to the change of equivalent ratio at the center and the side of the nozzle, the flame length and average temperature in the kiln show very little change but the $NO_x$ emission shows obvious difference. In conclusion, the best design conditions which have satisfying flame length, average temperature and $NO_x$ emission are as follows: $D_2/D_1$ is 1.33, equivalent ratio of burner is 1.25 and center nozzle conditions are Rich.

Combustion Characteristics and On-site Performance Test of a Double-cone Partial Premixed Nozzle with Various Fuel hole Patterns (이중 콘형 부분예혼합 GT 연료노즐의 연소특성 및 발전플랜트 실증)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June;Min, Kyungwook;Kang, Do Won
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.22-28
    • /
    • 2021
  • Combustion characteristics were examined experimentally for a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. An original model and a variant with a different fuel injection pattern are tested to compare their combustion characteristics such as NOx, CO and stability in pressurized conditions with single burner-flame and in an ambient multi-flame conditions with multi-burners. Test results show that NOx emissions are smaller for the variant, whose number of fuel holes is reduced with the same total area of fuel holes, in ambient and pressurized single-flame conditions with single burner, which results from enhanced fuel/air mixing due to a higher penetration of fuel into the air stream. The multi-burnerflame test results show that NOx emissions are smaller for the variant due to reduced flame interactions, which, on the contrary, slightly reduces the stability margin. On-site test results fromin an actual power plants also show that NOx emissions are reduced for the variant, compared with the original one, which is in agreement with the lab test results stated above.

Flame Structure and Combustion Dynamic Characteristics of GCH4/GO2 in Bi-Swirl Coaxial Injectors (동축 와류형 분사기에서 기체메탄/기체산소 화염 구조와 연소 동특성)

  • Bak, Sujin;Hwang, Donghyun;Ahn, Kyubok;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.28-38
    • /
    • 2019
  • To investigate the relation between flame structure and combustion dynamic characteristics in bi-swirl coaxial injectors for a liquid rocket engine, combustion experiments were performed using gaseous methane and gaseous oxygen. CH* radicals and pressure fluctuations were simultaneously measured by changing the injector geometries such as recess length/orifice diameter and the flow conditions such as equivalence ratio/oxidizer mass flow rate. As the injector geometries affected the velocities and mixing of the propellants, the change in flame structures was observed. From a result of the frequency analysis, it was confirmed that combustion dynamic characteristics varied according to the injector geometry/flow condition and combustion instabilities could occur under specific recess length/flow conditions.

A Study on the LPG Explosion Characteristics of Non-uniform Concentration (불균일 농도 LPG의 폭발 특성에 관한 연구)

  • 오규형
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.111-116
    • /
    • 2003
  • LPG explosion characteristics in non-uniform concentration was investigated with a 270 liter explosion vessel of which the scale is 100 cm${\times}$60 cm${\times}$45 cm. Vented explosion and closed explosion system were used. Experimental parameter were position of ignition source, nozzle diameter and flow rate of gas. Non uniform concentration was controlled by the nozzle diameter and flow rate. Explosion pressure were measured with strain type pressure sensor and the flame behavior was pictured with the video camera. Based on this experimental result, it was found that the flow rate of gas and the duration of gas injection are important factor for mixing the gas in the vessel. And as the increase the non-uniformity of gas concentration, explosion pressure and pressure rise rate Is decrease but the flame resident time in the vessel is increase. Therefore gas explosion to fire transition possibility will increase in non-uniform concentration gas explosion.