• Title/Summary/Keyword: 화염위치

Search Result 143, Processing Time 0.03 seconds

Real-Time Fire Detection based on CNN and Grad-CAM (CNN과 Grad-CAM 기반의 실시간 화재 감지)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1596-1603
    • /
    • 2018
  • Rapidly detecting and warning of fires is necessary for minimizing human injury and property damage. Generally, when fires occur, both the smoke and the flames are generated, so fire detection systems need to detect both the smoke and the flames. However, most fire detection systems only detect flames or smoke and have the disadvantage of slower processing speed due to additional preprocessing task. In this paper, we implemented a fire detection system which predicts the flames and the smoke at the same time by constructing a CNN model that supports multi-labeled classification. Also, the system can monitor the fire status in real time by using Grad-CAM which visualizes the position of classes based on the characteristics of CNN. Also, we tested our proposed system with 13 fire videos and got an average accuracy of 98.73% and 95.77% respectively for the flames and the smoke.

The Effect of Fire Plume on the Characteristics of Air Flow and $CO_2$Extinguishant Transfer (화재화염이 유동 및 $CO_2$소화제 전달특성에 미치는 영향)

  • 박찬수;최주석
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.33-43
    • /
    • 2002
  • To analyze the effect of fire plume on the characteristics of air flow and $CO_2$, extinguishant transfer when extinguishant is injected into a closed space similar to a marine engine room with fire plume, a numerical simulation on a space was performed. Flow fields and $CO_2$, concentration fields are calculated according with the variation of the location of nozzles. In all cases excepting the case of all nozzles located in the right side of ceiling, an counterclockwise & clockwise recirculation flow was found in the region of the right and left side of the nozzle on the second floor and such a recirculation flow greatly affected mass transfer and the diffusion process of $CO_2$, extinguishant. In the region of the first floor with fire plume, the diffusion process of $CO_2$, extinguishant was in agreement with the extension process of recirculation flow. It is considered that the result of this study can be useful to designing the arrangement of nozzles for the $CO_2$ fire fighting equipments in a marine engine room.

Dynamic study on the Interaction between Terminal Shock train and Flame Fluctuation of Supersonic Propulsion System (초음속 엔진의 흡입구 종말충격파와 연소실 화염의 상호간섭 동적연구)

  • Yeom, Hyo-Won;Kim, Sun-Kyeong;Kim, Seong-Jin;Sung, Hong-Gye;Gil, Hyun-Yong;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.79-82
    • /
    • 2009
  • Unsteady numerical analysis of an entire supersonic propulsion system from intake to nozzle was performed to study dynamic interaction between terminal shock in the intake and flame in the combustor. Both acceleration and cruise flight-modes were considered. Acoustic mode of the entire engine for both flight-modes were investigated by detail analysis of pressure fluctuation at each location of engine.

  • PDF

An Experimental Study on the Combustion Instability Evaluation by Using DMD (DMD 기법을 적용한 모형 가스터빈의 연소불안정성 평가에 관한 실험적 연구)

  • Son, Jinwoo;Sohn, Chae Hoon;Yoon, Jisu;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.59-60
    • /
    • 2017
  • Combustion instability of gas turbine is performed by adopting dynamic mode decomposition (DMD). The unstable frequencies are calculated and compared with FFT results. The damping coefficient derived from the DMD technique and FFT results were compared and analyzed. OH radical is measured by experimental work and fluctuation field is extracted and FTF was calculated at various points with DMD. The gains of FTF are changed depending on the extraction position of the heat release fluctuation field.

  • PDF

램제트 엔진의 지상시험용 Vitiated Air Heater를 이용한 Dump형 연소기의 연소성능에 관한 실험적 연구

  • 노우용;윤현진;손창현;이충원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.11-11
    • /
    • 2000
  • 액체렘제트 엔진에서는 고온·고속의 공기가 공기흡입구로 유입되기 때문에 고성능 램제트 연소기의 설계를 위하여 실제 비행조건을 모사할 수 있는 고온 고속의 공기 발샐장치가 필요하다. 본 연구에서는 수소연소에 의해 Vitiated Air를 발생시키도록 설계된 Vitiated Air Heater(VAH)를 제작하였으며, VAH의 성능평가를 통하여 80∼120m/s 와 400∼800K 범위에서 손쉽게 속도와 온도의 조절이 가능하고 균일한 속도 및 온도분포로 대기공기와 같은 Vitiated Air를 얻을 수 있었다. 그리고 VAH을 연결하여 Dump형 연소기의 특성을 실험하였다. 액체 램제트 엔진에 있어서 공기흡입구가 하나인 Dump형 연소기에 주요변수로서 흡입공기의 온도와 공연비를 변화시키면서 연소기내의 화염형상을 관찰하고, 온도분포를 계측하였으며 Injection 위치에 따른 화염현상을 관찰하였다. 각 경우의 연소효율을 계산하여 실험범위에서의 최적 연소조건을 제시하였다.

  • PDF

Measurement of soot in flames using laser induced grating spectroscopy (레이저 유도 격자 분광학을 이용한 화염내의 soot 측정)

  • 이중재;고동섭;박철웅;한재원;이영우
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.230-231
    • /
    • 2000
  • 최근 자동차, 항공기 등 연소과정을 수반하는 산업이 발전함에 따라 연소환경에 대한 관심이 높아지고 있다. 그런데 연소환경을 접촉식 방법으로 측정하게 되면, 측정기기가 연소환경에 영향을 주기 때문에 정확한 측정을 하기는 어렵다. 그래서 레이저를 이용한 비접촉식방법이 활용되고 있으며,$^{(1)}$ 그 중에서 LIGS(laser induced grating spectrosopy)나 DFWM(degenerate four wave mixing)$^{(1)}$ 은 신호대 잡음비가 높기 때문에 미세량으로 존재하는 분자를 검출하는데 유용할 뿐만 아니라 2차원 영상수집도 가능하다. 또한 LIGS의 시분해 신호를 분석하면 연소장내의 온도와 입자의 밀도 등을 산출할 수 있다. 본 실험에서는 대기압에서 불완전 연소장의 soot에 대한 신호를 수집, 분석하여 화염 위치에 따른 온도 변화와 soot의 농도 등을 정량적으로 조사했다.$^{(2)}$ (중략)

  • PDF

A Study on the Damage of Flame caused by the Vapor Cloud Explosion in LPG Filling Station (LPG충전소에서 증기운폭발에 의한 화염의 피해에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.53-60
    • /
    • 2010
  • LPG(Liquefied Petroleum Gas) vehicles in metropolitan area are being applied to improve air quality and have been proven effective for the reduction of air pollutant. In addition, LPG demand is growing rapidly as an environmentally friendly energy source and its gas station is also increasing every year. Consequently, this study tries to find out the influence of flame caused by the VCE(Vapor Cloud Explosion) in filling station on the adjacent combustibles and people by simulating relevant quantity of TNT. In addition, the damage estimation was conducted by using API regulations. If the scale of the radiation heat is known by calculating the distance of flame influence from the explosion site, the damage from the site can be easily estimated. And the accident damage was estimated by applying the influence on the adjacent structures and people into the PROBIT model. According to the probit analyze, the spot which is 30m away from the flame has 100% of the damage probability by the first-degree burn, 99.2% of the damage probability by the second-degree burn and 93.4% of the death probability by the fire.

The Volcanic Eruption Velocity and Tumulus of Jeju Island Controlled by the Natural Intelligence (자연 지능 제어에 의한 제주도의 화산 폭발 속도와 튜물러스)

  • Lee, Seong kook;Lee, Moon Ho;Kim, Jeong Su
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.493-499
    • /
    • 2022
  • This paper reports the results of the eruption of a volcano on Jeju Island at a certain rate, and the tumulus formed after the eruption and the basalt that erupted from the middle of Mt. Halla washed up to the sea. We analyzed the speed when basalt underground magma breaks through the neutral zone on the ground with an absolute temperature of about 1000K and explodes at an absolute temperature of 1200K at an altitude of 1950m. The density of combustion gas becomes smaller than the surrounding air due to the plume volcanic eruption, which is the heat flow of the flame column due to buoyancy, and buoyancy is generated and an updraft is formed. Flame pillars are classified as continuous, intermittent, and buoyant flame zones. As the speed of the flame pillar of Mt. Halla (1950m) falls from the highest point it has risen, potential energy is converted into kinetic energy and is caused by the flow of fluid, solving these two equations equal, the volcanic eruption velocity is 87.5 m/s. At this time, the density of magma is inversely proportional to the temperature. Geomunoreum (456m) had an explosion speed of 42.6m/s.

Development of Hybrid/Dual Swirl Jet Combustor for a MGT (Part II: Numerical Study on Isothermal Flow) (마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part II: 비반응 유동에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-79
    • /
    • 2013
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine (MGT) were numerically investigated. Location of pilot burner, swirl angle and direction were varied as main parameters with the identical thermal load. As a result, the variations in location of pilot nozzle, swirl angle and direction resulted in the significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus the flame stability and emission performance might be significantly changed. With the comparison of experimental results, the case of swirl angle $45^{\circ}$ and co-swirl flow including optimum location of pilot burner were chosen in terms of the flame stability and emissions for the development of hybrid/dual swirl jet combustor.