• Title/Summary/Keyword: 화염계수

Search Result 38, Processing Time 0.022 seconds

Soot Size and Concentration Measurements in a Laminar Diffusion Flame Using a Lignt Scattering/Extinction Technique (광산란 소멸법을 이용한 층류확산화염내에 매연입자의 크기 및 농도 측정)

  • 하영철;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1796-1804
    • /
    • 1992
  • Profiles of soot volume fraction, average diameter and particle number density have been measured using a light scattering and extinction technique in a coannular propane diffusion flame at atmosperic pressure. Temperature profiles were also obtained using a thermocouple technique. Measurements show that soot is first observed to form low in the flame in an annular region inside the main reaction zone. At higher locations this annular region widen until entire flame is observed to contain particles. Soot volume fraction and particle diameter profiles peak some 1mm on the fuel side of peak temperature and increase with height to oxidation region. Number density of the flame core drop steeply from formation region to growth region and relatively invariant to some height and decay out at flame tip.

Investigation of the Relationship Between Wall Thermal Conductivity and Inner Room Temperature in Compartment Fires (구획화재에서 벽면의 열전도 계수와 내부 온도의 상관관계 분석)

  • You, Woo Jun;Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.17-23
    • /
    • 2018
  • In this study, the relations of the wall thermal conductivity and surface temperature in a compartment fire are investigated using Buckingham Pi theorem. The dimensionless parameters of the previous study are analyzed in order to correlate the dimensionless groups of the heat release rate, the thermal conductivity, the volume of compartment and the convective heat transfer coefficient. In addition the reduced scale of compartment, which has 1/6 size of ISO 9705 Room Corner Tester, is manufactured and the oxygen concentration and the maximum temperature in the space are measured for the gasoline pool fire ($10cm{\times}10cm$, $15cm{\times}15cm$ and $20cm{\times}20cm$). Finally, the criterion of the wall temperature increase are suggested in accordance with the thermal conductivity and the convective heat transfer coefficient. In addition, the dimensionless empirical equation using Buckingham Pi theorem considering the heat release rate are presented suggested. The results of this study will be useful especially for the fire phenomenon investigation of the wall thermal conductivity coefficient and shape in the compartment space.

The Applicable Investigation of Response Surface Methodology(RSM) for the Prediction of the Ignition Time, the Heat Release Rate and the Maximum Flame Height of the Interior Materials (내장재의 발화시간, 열방출율 및 최대화염 높이의 예측을 위한 반응표면방법론의 활용성 고찰)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.14-20
    • /
    • 2006
  • The aim of this study is to predict the ignition times and the HRR(heat release rate) for building interior materials. By using the literature data and RSM(response surface methodology), the new equations for predicting the ignition time and the HRR of building interior materials are proposed. The A.A.P.E.(average absolute percent error) and the A.A.D.(average absolute deviation) of the reported and the calculated ignition times by means of the thickness and the density were 4.35 sec and 1.57 sec, and the correlation coefficient was 0.987. The correlation coefficient of the reported and the calculated the net HRR by means of burner width and power was 0.983. Also the correlation coefficient of the reported and the calculated the total HHR by means of burner width and power was 0.999. The correlation coefficient of the reported and the calculated the maximum flame height by means of burner width and power was 0.999. The values calculated by the proposed equations were in good agreement with the literature data.

An Experimental Study on the Combustion Instability Evaluation by Using DMD (DMD 기법을 적용한 모형 가스터빈의 연소불안정성 평가에 관한 실험적 연구)

  • Son, Jinwoo;Sohn, Chae Hoon;Yoon, Jisu;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.59-60
    • /
    • 2017
  • Combustion instability of gas turbine is performed by adopting dynamic mode decomposition (DMD). The unstable frequencies are calculated and compared with FFT results. The damping coefficient derived from the DMD technique and FFT results were compared and analyzed. OH radical is measured by experimental work and fluctuation field is extracted and FTF was calculated at various points with DMD. The gains of FTF are changed depending on the extraction position of the heat release fluctuation field.

  • PDF

2-Parameter High Frequency Combustion Instability Model (2-파라메타 모델에 의한 고주파 연소불안정 해석)

  • 조용호;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.74-83
    • /
    • 1997
  • The definition of burning admittance and conventional n-$\tau$ stability rating technique are combined to investigate the high frequency combustion instabilities inside the cylindrical combustion chamber. Perturbed flow variables are written as the sum of fluctuating and time-averaged mean quantities on the assumption that the terms of the order higher than unity are sufficiently small, hence linearized governing equations could be formulated. Chamber admittances up and downstream of the flame front calculated with appropriate boundary conditions result in the burning admittance and corresponding n-$\tau$ neutral stability curve. Configurational and operational design factors are tested to detect the unstable wave-induced LOX-RP1 combustion instabilities. Operational design factors, e.g. pressure or O/F ratio, appear less influential to drive high frequency instability while the location of the flame front and configurational factors enhance or deteriorate the stabilities strongly. Conclusively, LOX-RP1 combustion inside the cylindrical combustion chamber is apt to be unstable against long residence time and shortened chamber length.

  • PDF

Study of Flow Discharging Characteristics of Injectors at Fuel Rich Conditions (연료 과농 환경에서 분사기 유량 통과 특성 연구)

  • Seo, Seong-Hyeon;Lim, Byoung-Jik;Kim, Mun-Ki;Ahn, Kyu-Bok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.9-12
    • /
    • 2010
  • This paper discusses experimental data for the assessment of flow discharging characteristics of double swirl coaxial injectors operating at fuel-rich conditions. Combustion tests employing liquid oxygen and kerosene (Jet A-1) were conducted and a discharge coefficient was utilized for defining flow characteristics. A mass flow rate, a pressure, and a temperature were measured to estimate discharge coefficients. Fuel injectors revealed a fixed value of a discharge coefficient regardless of matched LOx injector design, chamber pressure, and mixture ratio. However, oxidizer injectors showed varying discharging coefficients depending on chamber pressure and mixture ratio. Flame structure variations seem to affect flow discharging characteristics of the oxidizer side.

  • PDF

Study on Discharge Coefficient Variations of Bi-Swirl Injectors with Working Conditions (작동 조건에 따른 이중 와류 분사기 유량 계수 변화 연구)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.177-180
    • /
    • 2010
  • It has been studied the effect of mixture ratio and chamber pressure on variations of discharge coefficients. Combustion experiments of bi-liquid swirl coaxial injectors were conducted at fuel-rich conditions with liquid oxygen and kerosene. Using two types of injectors for the experiments, characteristics of the discharge coefficient have been identified from variations in a diameter of the fuel nozzle and a momentum ratio along with the change of a LOx spray angle. It is concluded that discharge coefficients do not vary because of no change of flame structures from the fact that the fuel swirl chamber is completely filled up with fuel flow.

  • PDF

Study on Flow Discharge Characteristics of Liquid Rocket Coaxial Injectors (액체로켓 동축 분사기의 유량계수에 대한 고찰)

  • Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.49-53
    • /
    • 2009
  • The paper presents the results of the experimental study about flow discharge characteristics of double swirl coaxial injectors for a liquid rocket engine. Flow discharge characteristics of injectors become one of critical design issues for LRE combustion devices. Tap water and liquid oxygen/kerosene were used for ambient and hot firing tests, respectively. A combustion discharge coefficient varies depending on a mixture ratio and a recess ratio, and magnitudes of the variations are different with respect to injector shapes and operating conditions. The variation of a combustion discharge coefficient with a LOx injector is considered to result from flame structure changes due to physical property changes.

  • PDF

Examination of validation for equivalent gas to replace natural gas (천연가스를 모사하는 등가가스의 유효성 검토)

  • Kim, Jong-Min;Lee, Seungro;Lee, Chang-Eon
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • In order to estimate the combustion characteristics and the gas interchangeability for natural gas with various compositions per each production area, equivalent gas are using to replace natural gas. It is known that an equivalent gas has the same the heating value, the compression factor, the relative density, CO emission and the burning velocity as the original natural gas. However, it is not reported that the flame shape and thermal efficiency and NOx emission by real gas appliance. In this study, equivalent gas was examined the validation to replace natural gas. The CO emission the burning velocity and the flame temperature were reconfirmed, and the flame shape, the NOx emission and the thermal efficiency were numerically and experimentally investigated. As results, there was not a large difference between natural gas and equivalent gas. This result demonstrated that there was no problem using equivalent gas to replace natural gas.

A Study on the Effect of Exhaust Manifold Configuration on Engine Performance in a 4 Cylinder 4 Cycle Gasoline Engine (4실린더 4사이클 가솔린기관에서 배기계의 형상이 기관성능에 미치는 영향에 관한 연구)

  • 정수진;김태훈;조진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.751-767
    • /
    • 1994
  • Recent developments of S.I. engine, aiming to higher power, better fuel economy, lower air pollution and better driveability, have much focused on the importance of the role of computer simulation in engine research and development. In this point of view, improving engine performance requires finding some means to improve volumetric efficiency. Up to now there have been several attempts to optimize the intake and exhaust system of internal system of S.I. engine by computer simulation. There appear to be few studies available, however, of such simulation & experimental studies applied to the optimization of exhaust manifold configuration. In this study, gas exchange & power process of 4 cylinder S.I. Engine was studies numerically & experimentally, and governing equation of a one-dimensional unsteady compressible flow and combustion process were respectively solved by a characteristics method and 2-zone model. The aim of this study is to predict and investigate the influence of pressure wave interaction at the exhaust systems on engine performance with widely differing exhaust manifold configuration.