• Title/Summary/Keyword: 화소기반 분류

Search Result 106, Processing Time 0.022 seconds

Adaptive Error Concealment Technique using a Variable Operating Region Algorithm based on MPEG-4 Coding (연산 영역 가변 알고리즘을 적용한 MPEG-4 부호화 기반의 적응적 오류 은닉 기법)

  • 김병주;권기구;이석환;권성근;김봉석;이건일
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.78-88
    • /
    • 2003
  • A novel adaptive error concealment technique is proposed using a variable operating region algorithm based on MPEG-4 coding. In the algorithm, a missing block is classified as flat or edge block based on local information from the surrounding blocks extracted using a Sobel operation in a variable operating region (VOR). In this case, the VOR is determined adaptively according to the number of edge directions in the missing block. 1;sing the classification, the flat blocks are then concealed by the Proposed mean based weighted bilinear interpolation (MWBLI) method, and the edge blocks by the boundary directional interpolation (BDI) method. Consequently, the use of the Proposed VOR improves the subjective performance in a curved edge region, while the adaptive processing based on block classification improves the objective performance. Experimental results confirmed that the proposed algorithm produced better results than conventional algorithms, both subjectively and objectively.

  • PDF

Modified Weight Filter Algorithm using Pixel Matching in AWGN Environment (AWGN 환경에서 화소매칭을 이용한 변형된 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1310-1316
    • /
    • 2021
  • Recently, with the development of artificial intelligence and IoT technology, the importance of video processing such as object tracking, medical imaging, and object recognition is increasing. In particular, the noise reduction technology used in the preprocessing process demands the ability to effectively remove noise and maintain detailed features as the importance of system images increases. In this paper, we provide a modified weight filter based on pixel matching in an AWGN environment. The proposed algorithm uses a pixel matching method to maintain high-frequency components in which the pixel value of the image changes significantly, detects areas with highly relevant patterns in the peripheral area, and matches pixels required for output calculation. Classify the values. The final output is obtained by calculating the weight according to the similarity and spatial distance between the matching pixels with the center pixel in order to consider the edge component in the filtering process.

Quality Inspection Automation System Based on Smart Factory and Image Processing (스마트 팩토리: 영상처리 기반의 품질검수 자동화 시스템)

  • Im, Yeong-Ju;park, Su-Ah;An, Eun-Ju;Lee, Su-Bin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.806-808
    • /
    • 2022
  • 본 논문에서는 자동화 시대에 맞춰 실시간 영상처리 기반의 모니터 품질검수 시스템을 구현하고자 한다. 작동하는 컨베이어벨트 위에 모니터가 놓이면 아두이노(Arduino)와 웹캠(Webcam), 각종 모터, 센서 등 다양한 부품으로 영상처리를 진행하여 불량 화소 기준에 따라 불량 여부를 판별한 후 자동으로 분류된다. 기존에 노동자가 직접 불량 화소를 판별하는 방식에서 모든 과정을 ICT 기술로 통합하여 최소 비용과 시간의 효과를 발현시키는 첨단 지능형 공장으로의 변화를 주고자 한다.

MRF-based Iterative Class-Modification in Boundary (MRF 기반 반복적 경계지역내 분류수정)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.139-152
    • /
    • 2004
  • This paper proposes to improve the results of image classification with spatial region growing segmentation by using an MRF-based classifier. The proposed approach is to re-classify the pixels in the boundary area, which have high probability of having classification error. The MRF-based classifier performs iteratively classification using the class parameters estimated from the region growing segmentation scheme. The proposed method has been evaluated using simulated data, and the experiment shows that it improve the classification results. But, conventional MRF-based techniques may yield incorrect results of classification for remotely-sensed images acquired over the ground area where has complicated types of land-use. A multistage MRF-based iterative class-modification in boundary is proposed to alleviate difficulty in classifying intricate land-cover. It has applied to remotely-sensed images collected on the Korean peninsula. The results show that the multistage scheme can produce a spatially smooth class-map with a more distinctive configuration of the classes and also preserve detailed features in the map.

Shot Boundary Detection Algorithm by Compensating Pixel Brightness and Object Movement (화소 밝기와 객체 이동을 이용한 비디오 샷 경계 탐지 알고리즘)

  • Lee, Joon-Goo;Han, Ki-Sun;You, Byoung-Moon;Hwang, Doo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.35-42
    • /
    • 2013
  • Shot boundary detection is an essential step for efficient browsing, sorting, and classification of video data. Robust shot detection method should overcome the disturbances caused by pixel brightness and object movement between frames. In this paper, two shot boundary detection methods are presented to address these problem by using segmentation, object movement, and pixel brightness. The first method is based on the histogram that reflects object movements and the morphological dilation operation that considers pixel brightness. The second method uses the pixel brightness information of segmented and whole blocks between frames. Experiments on digitized video data of National Archive of Korea show that the proposed methods outperforms the existing pixel-based and histogram-based methods.

Image Restoration using Pattern of Non-noise Pixels in Impulse Noise Environments (임펄스 잡음 환경에서 비잡음 화소의 패턴을 사용한 영상복원)

  • Cheon, Bong-Won;Kim, Marn-Go;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.407-409
    • /
    • 2021
  • Under the influence of the 4th industrial revolution, various technologies such as artificial intelligence and automation are being grafted into industrial sites, and accordingly, the importance of data processing is increasing. Digital images may generate noise due to various reasons, and may affect various systems such as image recognition and classification and object tracking. To compensate for these shortcomings, we propose an image restoration algorithm based on pattern information of non-noise pixels. According to the distribution of non-noise pixels inside the filtering mask, the proposed algorithm switched the filtering process by dividing the interpolation method into a pattern that can be applied, a pattern based on region division, and a randomly arranged pixel pattern. preserves and restores the image. The proposed algorithm showed superior performance compared to the existing impulse noise removal algorithm.

  • PDF

Human Motion Tracking by Combining View-based and Model-based Methods for Monocular Video Sequences (하나의 비디오 입력을 위한 모습 기반법과 모델 사용법을 혼용한 사람 동작 추적법)

  • Park, Ji-Hun;Park, Sang-Ho;Aggarwal, J.K.
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.657-664
    • /
    • 2003
  • Reliable tracking of moving humans is essential to motion estimation, video surveillance and human-computer interface. This paper presents a new approach to human motion tracking that combines appearance-based and model-based techniques. Monocular color video is processed at both pixel level and object level. At the pixel level, a Gaussian mixture model is used to train and classily individual pixel colors. At the object level, a 3D human body model projected on a 2D image plane is used to fit the image data. Our method does not use inverse kinematics due to the singularity problem. While many others use stochastic sampling for model-based motion tracking, our method is purely dependent on nonlinear programming. We convert the human motion tracking problem into a nonlinear programming problem. A cost function for parameter optimization is used to estimate the degree of the overlapping between the foreground input image silhouette and a projected 3D model body silhouette. The overlapping is computed using computational geometry by converting a set of pixels from the image domain to a polygon in the real projection plane domain. Our method is used to recognize various human motions. Motion tracking results from video sequences are very encouraging.

Unsupervised Classification of KOMPSAT EOC Imagery Based on Independent Component Analysis (독립 요소 분석 기반의 KOMPSAT EOC영상 무감독 분류)

  • 변승건;이호영;이쾌희
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.581-587
    • /
    • 2003
  • 독립 요소 분석 (Independent Component Analysis: ICA)는 텍스처를 의미 있는 특징으로 변환하는 강인한 영상 필터를 생성하기 위한 확률적 방법이다. ICA는 고차통계적 특성을 사용하여 ICA 필터와 독립 요소를 동시에 학습한다. 제안한 분류 방법은 fast ICA 알고리즘을 사용하여 KOMPSAT 영상으로부터 ICA 필터를 생성한 다음, 필터에 의해 투영된 텍스처들의 특징들을 독립 평면상에서 무감독 방법으로 분류한다. KOMPSAT 영상은 텍스처 성분이 뚜렷하지 않는 영역이 존재하기 때문에 본 논문에서는 투영된 특징 값들과 윈도우 내의 정규화된 평균 화소값으로 특징 벡터를 재구성하였다. 분류 방법으로는 K-means 클러스터링을 적용하였다. 6.6m 해상도를 가진 KOMPSAT 흑백 영상에 대해 제안한 방법은 우수한 분류 성능을 보인다.

  • PDF

Adaptive Blocking Artifacts Reduction Algorithm in Block Boundary Area Using Error Backpropagation Learning Algorithm (오류 역전파 학습 알고리듬을 이용한 블록경계 영역에서의 적응적 블록화 현상 제거 알고리듬)

  • 권기구;이종원;권성근;반성원;박경남;이건일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.9B
    • /
    • pp.1292-1298
    • /
    • 2001
  • 본 논문에서는 공간 영역에서의 블록 분류 (block classification)와 순방향 신경망 필터(feedforward neural network filter)를 이용한 블록 기반 부호화에서의 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록 경계를 인접 블록간의 통계적 특성을 이용하여 평탄 영역과 에지 영역으로 분류한 후, 각 영역에 대하여 블록화 현상이 발생하였다고 분류된 클래스에 대하여 적응적인 블록간 필터링을 수행한다. 즉, 평탄 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 오류 역전파 학습 알고리듬 (error backpropagation learning algorithm)에 의하여 학습된 2계층 (2-layer) 신경망 필터를 이용하여 블록화 현상을 제거하고, 복잡한 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 에지 성분을 보존하기 위하여 선형 내삽을 이용하여 블록간 인접 화소의 밝기 값만을 조정함으로써 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.

  • PDF

A new segmentation method for non-manhattan layout document images using connected component (연결요소 특징을 이용한 복잡한 문서영상의 구조 분석)

  • 이상협;이경무
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.71-74
    • /
    • 1997
  • 본 논문은 일반적으로 제약 없는 형식 문서 즉, 논-맨하탄(non-manhattan) 형식의 이진문서영상을 분석하는 기법으로서, 연결요소기법에 기반한 특징추출과 이를 이용한 영역분리 및 분류에 관한 새로운 방법을 제안한다. 제안한 방식은 바텀-업(bottom-up)방식으로서 먼저 처리속도의 고속화와 축소시 특징 영역보존을 위해 임계치 축소기법을 사용하고, 축소된 이진 문서영상내의 각 연결된 검은 화소의 집합을 개체화하고 개체의 특성에 따라 텍스트, 신성분, 해프톤, 도형 그리고 표 등으로 분류한다. 영역분류는 두단계로 이루어지는데, 1차분류에서는 우선, B/W 비, 면적, 외각 테두리의 높이와 너비 비, 테두리선유무 등의 특징을 이용하여 해프톤, 수평 수직선, 테두리(표 및 도형)영역을 분리한다. 이후 2차 분류에서는 문자성분의 수평결합을 통한 텍스트행 성분을 추출한다. 마지막 후처리 과정으로 표분석 알고리듬을 통하여 테두리 영역중 표와 도형을 정확히 구분하고, 또한 도형에 관련한 문서성분을 해당 도형 개체에 연결하는 작업을 수행함으로써 완벽한 영역분류를 한다. 다양한 문서영상을 이용한 시뮬레이션을 통해 제안한 알고리듬의 성능을 입증한다.

  • PDF