• Title/Summary/Keyword: 화소기반 분류

Search Result 106, Processing Time 0.024 seconds

Block-based Color Image Segmentation Using CLS Image (색차 휘도합 영상을 이용한 블록 기반 칼라 영상 분할)

  • 곽노윤
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.271-276
    • /
    • 2000
  • 본 논문은 칼라 성분들간의 차분 영상과 휘도 영상을 이용하여 산출한 색차 휘도합 영상을 대상으로 블록에 기반한 영상 분할을 수행하여 객체의 형상 정보를 추출함으로써 분할 특성을 개선한 블록 기반 칼라 영상 분할 기법에 관한 것이다. 우선, R, G, B 영상들 간의 차분 성분들을 구하여 합산한 후, 이를 정규화하여 색차합 영상을 구한다. 다음으로 화소 단위로 휘도 영상의 상위 2비트와 정하화된 색차합 영상의 하위 6비트를 결합하여 색차 휘도합 영상을 얻는다. 이후, 기설정된 크기의 블록으로 분할된 색차 휘도합 영상의 각 블록을 질감 블록과 단순 블록 및 에지 블록으로 분류하고 각 유형의 블록별로 병합한 후, 기설정된 마커 배정 규칙에 따라 선택적으로 마커를 부여한다. 마지막으로, 마커가 부여되지 않은 블록을 대상으로 화소 단위의 워터쉐드 알고리즘을 적용함으로써 자연스러운 형상 정보를 얻을 수 있다. 컴퓨터 시뮬레이션 결과를 통해 고찰할 때, 제안된 방범은 질감 영역에서의 과분할의 문제와 과도한 연산량의 부담을 효과적으로 경감시킬 수 있으나, 더불어, 영상 분할용 파라미터들의 민감도가 낮아 서로 다른 화소 분포 특성온 갖는 영상들에 전역적인 파라미터들사용할 수 있을 뿐만 아니라 특히, 색차 휘도합 영상에 반영된 색차 성분에 힘입어 저대조 경계면에서의 분할 특성을 현저히 개선시킬 수 있는 이점이 있다.

  • PDF

Crop Classification for Inaccessible Areas using Semi-Supervised Learning and Spatial Similarity - A Case Study in the Daehongdan Region, North Korea - (준감독 학습과 공간 유사성을 이용한 비접근 지역의 작물 분류 - 북한 대홍단 지역 사례 연구 -)

  • Kwak, Geun-Ho;Park, No-Wook;Lee, Kyung-Do;Choi, Ki-Young
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.689-698
    • /
    • 2017
  • In this paper, a new classification method based on the combination of semi-supervised learning with spatial similarity of adjacent pixels is presented for crop classification in inaccessible areas. Iterative classification based on semi-supervised learning is applied to extract reliable training data from both the initial classification result with a small number of training data, and classification results of adjacent pixels are also considered to extract new training pixels with less uncertainty. To evaluate the applicability of the proposed method, a case study of the classification of field crops was carried out using multi-temporal Landsat-8 OLI acquired in the Daehongdan region, North Korea. From a case study, the misclassification of crops and forests, and isolated pixels in the initial classification result were greatly reduced by applying the proposed semi-supervised learning method. In addition, the combination of classification results of adjacent pixels for the extraction of new training data led to the great reduction of both misclassification results and isolated pixels, compared to the initial classification and traditional semi-supervised learning results. Therefore, it is expected that the proposed method would be effectively applied to classify areas in which it is difficult to collect sufficient training data.

A Comparison of Pixel- and Segment-based Classification for Tree Species Classification using QuickBird Imagery (QuickBird 위성영상을 이용한 수종분류에서 픽셀과 분할기반 분류방법의 정확도 비교)

  • Chung, Sang Young;Yim, Jong Su;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.540-547
    • /
    • 2011
  • This study was conducted to compare classification accuracy by tree species using QuickBird imagery for pixel- and segment-based classifications that have been mostly applied to classify land covers. A total of 398 points was used as training and reference data. Based on this points, the points were classified into fourteen land cover classes: four coniferous and seven deciduous tree species in forest classes, and three non-forested classes. In pixel-based classification, three images obtained by using raw spectral values, three tasseled indices, and three components from principal component analysis were produced. For the both classification processes, the maximum likelihood method was applied. In the pixel-based classification, it was resulted that the classification accuracy with raw spectral values was better than those by the other band combinations. As resulted that, the segment-based classification with a scale factor of 50% provided the most accurate classification (overall accuracy:76% and ${\hat{k}}$ value:0.74) compared to the other scale factors and pixel-based classification.

Development of a Classification Method for Forest Vegetation on the Stand Level, Using KOMPSAT-3A Imagery and Land Coverage Map (KOMPSAT-3A 위성영상과 토지피복도를 활용한 산림식생의 임상 분류법 개발)

  • Song, Ji-Yong;Jeong, Jong-Chul;Lee, Peter Sang-Hoon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.686-697
    • /
    • 2018
  • Due to the advance in remote sensing technology, it has become easier to more frequently obtain high resolution imagery to detect delicate changes in an extensive area, particularly including forest which is not readily sub-classified. Time-series analysis on high resolution images requires to collect extensive amount of ground truth data. In this study, the potential of land coverage mapas ground truth data was tested in classifying high-resolution imagery. The study site was Wonju-si at Gangwon-do, South Korea, having a mix of urban and natural areas. KOMPSAT-3A imagery taken on March 2015 and land coverage map published in 2017 were used as source data. Two pixel-based classification algorithms, Support Vector Machine (SVM) and Random Forest (RF), were selected for the analysis. Forest only classification was compared with that of the whole study area except wetland. Confusion matrixes from the classification presented that overall accuracies for both the targets were higher in RF algorithm than in SVM. While the overall accuracy in the forest only analysis by RF algorithm was higher by 18.3% than SVM, in the case of the whole region analysis, the difference was relatively smaller by 5.5%. For the SVM algorithm, adding the Majority analysis process indicated a marginal improvement of about 1% than the normal SVM analysis. It was found that the RF algorithm was more effective to identify the broad-leaved forest within the forest, but for the other classes the SVM algorithm was more effective. As the two pixel-based classification algorithms were tested here, it is expected that future classification will improve the overall accuracy and the reliability by introducing a time-series analysis and an object-based algorithm. It is considered that this approach will contribute to improving a large-scale land planning by providing an effective land classification method on higher spatial and temporal scales.

An Iterative Approach to Contextual Classification of Remote Sensing Images (공간적 상관성의 반복적 결합을 이용한 원격탐사 화상 분류)

  • 박노욱;지광훈
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.9-14
    • /
    • 2003
  • 본 연구에서는 원격탐사 화상의 분류를 목적으로 분광정보와 공간적 상관성의 반복적 결합방법을 제안하였다. 퍼지이론을 기반으로 공간적 상관성을 분류 과정에 적용하기 위하여 초기단계에서 정의된 소속 함수에 대해서 주변영역에 대한 필터링을 적용하였고, 특정 수렴 조건을 만족하는 단계까지 반복적 결합을 수행하였다. Landsat TM 화상에 적용한 결과, 향상된 분류정확도와 분광정보만으로 분류가 애매한 화소의 공간적 분포 양상을 확인할 수 있었다.

  • PDF

Image Segment-Based Stereo Matching for Improving Boundary Accuracy (경계영역 정확도 향상을 위한 영상분할 기반 스테레오 매칭)

  • Mun, Ji-Hun;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.63-66
    • /
    • 2015
  • 3차원 영상을 생성하기 위해 스테레오 매칭을 통해 깊이 정보를 획득한다. 이때 발생하는 경계영역과 텍스처가 부족한 부분의 깊이정보 부정확성 문제를 해결하기 위해 영상 분할 기반 스테레오 매칭 방법을 제안한다. 일반적으로 사용하는 윈도우 기반 스테레오 매칭 결과를 기반으로 분할된 영상 내에서 최적의 변위 값을 재 할당함으로서 깊이정보의 정확성을 향상시킬 수 있다. Mean-shift는 참조 영상에서 화소 간 평균값 차이가 최대가 되는 영역들을 반복적으로 찾는다. 유사한 평균값을 갖는 영역들을 기반으로 영상을 분할하는 것을 Mean-shift를 이용한 영상분할 이라고 한다. 분할된 영상은 각 영역을 대표하는 패치 구조를 가지고 있어 참조 영상에 포함되어있는 잡음에 강인한 특성을 지닌다. 스테레오 매칭을 통해 화소별로 변위 값을 할당해주는 대신, 분할된 영상을 이용하여 각 분할 영역에 동일한 변위 값을 할당한다. 분할된 영상에 동일한 변위 정보를 할당할 경우 객체와 배경의 경계영역에서 잘못된 변위 값이 할당되는 경우가 발생한다. 이러한 경계 영역의 변위정보 부정확성을 보완하기 위해 화소의 기울기 항을 비용 값 계산 과정에 추가하여 단점을 보완한다. 최종 비용 값 계산을 통해 획득한 초기 변위 지도에 중간 값 필터를 적용하여 분류된 영역에 동일한 변위 값을 할당한다. 제안한 방법을 적용하여 경계영역의 정확도가 향상된 최종 변위 지도를 획득한다.

  • PDF

Object-based classification for building detection using VHR image and Lidar data (고해상도 영상 및 라이다 자료를 이용한 객체 기반 건물 탐지)

  • Yoon Yeo-Sang
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.307-310
    • /
    • 2006
  • 고해상도(VHR, Very High Resolution) 영상은 활용에 따라 도심의 다양한 정보를 얻을 수 있는 잠재적 가치가 매우 큰 자료이다. 그러나 이러한 고해상도 영상자료는 매우 높은 공간해상력으로 인해 같은 용도의 객체 혹은 같은 객체(예, 건물)라 할지라도 다양한 분광 특성 및 형태로 표현된다. 그러므로 이러한 고해상도영상을 이용하여 효과적으로 주제도를 생성하기 위해서는 현재까지 영상분류 분야에서 주로 활용되고 있는 화소(pixel)단위 기반의 분석방법으로는 한계가 존재한다. 본 연구에서는 이러한 문제점을 보완하기 위한 방법으로 활발한 연구가 진행되고 있는 세그멘트(segment) 혹은 객체(object) 기반 분류기법을 고해상도 영상 및 라이다 자료에 적용하여 도심지역의 건물들을 추출해 보았으며, 그 활용 가능성에 대하여 판단해 보았다. 이러한 세그멘트 기법은 분류하고자 하는 객체들을 하나의 동일한 특성을 가지는 집단으로 모으는 방법을 말하는데, 이를 위해 본 연구에서는 multi-resolution image segmentation기법을 제공해주는 eCognition이라는 소프트웨어를 이용하였다.

  • PDF

Motion Adaptive Temporal Noise Reduction Filtering Based on Iterative Least-Square Training (반복적 최적 자승 학습에 기반을 둔 움직임 적응적 시간영역 잡음 제거 필터링)

  • Kim, Sung-Deuk;Lim, Kyoung-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.127-135
    • /
    • 2010
  • In motion adaptive temporal noise reduction filtering used for reducing video noises, the strength of motion adaptive temporal filtering should be carefully controlled according to temporal movement. This paper presents a motion adaptive temporal filtering scheme based on least-square training. Each pixel is classified to a specific class code according to temporal movement, and then, an iterative least-square training method is applied for each class code to find optimal filtering coefficients. The iterative least-square training is an off-line procedure, and the trained filter coefficients are stored in a lookup table (LUT). In actual noise reduction filtering operation, after each pixel is classified by temporal movement, simple filtering operation is applied with the filter coefficients stored in the LUT according to the class code. Experiment results show that the proposed method efficiently reduces video noises without introducing blurring.

Adaptive Search Range Decision for Accelerating GPU-based Integer-pel Motion Estimation in HEVC Encoders (HEVC 부호화기에서 GPU 기반 정수화소 움직임 추정을 고속화하기 위한 적응적인 탐색영역 결정 방법)

  • Kim, Sangmin;Lee, Dongkyu;Sim, Dong-Gyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.699-712
    • /
    • 2014
  • In this paper, we propose a new Adaptive Search Range (ASR) decision algorithm for accelerating GPU-based Integer-pel Motion Estimation (IME) of High Efficiency Video Coding (HEVC). For deciding the ASR, we classify a frame into two models using Motion Vector Differences (MVDs) then adaptively decide the search ranges of each model. In order to apply the proposed algorithm to the GPU-based ME process, starting points of the ME are decided using only temporal Motion Vectors (MVs). The CPU decides the ASR as well as the starting points and transfers them to the GPU. Then, the GPU performs the integer-pel ME. The proposed algorithm reduces the total encoding time by 37.9% with BD-rate increase of 1.1% and yields 951.2 times faster ME against the CPU-based anchor. In addition, the proposed algorithm achieves the time reduction of 57.5% in the ME running time with the negligible coding loss of 0.6%, compared with the simple GPU-based ME without ASR decision.

Extraction of Changed Pixels for Hyperion Hyperspectral Images Using Range Average Based Buffer Zone Concept (구간평균 그래프 기반의 버퍼존 개념을 적용한 Hyperion 초분광영상의 변화화소 추출)

  • Kim, Dae-Sung;Pyen, Mu-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.487-496
    • /
    • 2011
  • This study is aimed to perform more reliable unsupervised change detection through the re-extraction of the changed pixels which were extracted with global thresholding by applying buffer zone concept. First, three buffer zone was divided on the basis of the thresholding value which was determined using range average and the maximum distance point from a straight line. We re-extracted the changed pixels by performing unsupervised classification for buffer zone II which consists of changed pixels and unchanged pixels. The proposed method was implemented in Hyperion hyperspectral images and evaluated comparing to the existing global thresholding method. The experimental results demonstrated that the proposed method performed more accuracy change detection for vegetation area even if extracted slightly more changed pixels.