• Title/Summary/Keyword: 화서수

Search Result 134, Processing Time 0.017 seconds

Reproductive Phenology of Four Korean Seagrasses, Zostera caespitosa, Z. caulescens, Z. japonica and Z. marina (한국산 해초 포기거머리말, 수거머리말, 애기거머리말과 거머리말의 생물계절학)

  • Lee, Sung-Mi;Lee, Sang-Yong;Choi, Chung-Il
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.125-133
    • /
    • 2005
  • This study described the phonology and reproductive potential of four species of Korean seagrasses, Zostera caespitosa, Z. caulescem, Z. Japonica and Z. marina. Z. caespitosa and Z. caulescens sampled from a mixed stand at the subtidal area of Yulpo Bay, Geojedo of the South Sea of Korea in November 2002 and August 2003. Z japonica and Z. marina occurred at the depth between the middle intertidal and shallow subtidal (<1m below mean sea level) of Seungbongdo (in Yellow Sea) samples collected in February and October 2003. The sexual reproductive phase of the four Zostera species was apparently different in timing of flowering, reproductive period, fruiting and seed maturing. Z. caespitosa flowered from February to early May $(10-16^{\circ}C)$, and its seed production completed in early May. The reproductive shoots of Z. caulescens began to appear in January $(9^{\circ}C)$, and its flowering followed from February to June $(10-19^{\circ}C)$. The flowers of Z. japonica were observed from July to September $(18-22^{\circ}C)$, and its seeds matured from August to September. The most commonly I marina flowered from April to August $(7-21^{\circ}C)$ and developed into seeds in July. Z. caulescens, the largest plant, had the highest number of seeds per shoot and longest spadix length. Z. marina, which was intermediate In size, recorded the highest reproductive potential. The study indicates that the reproductive phase and potential of the four species of seagrass from Korea are highly related to water temperature, and the populations of these species show a perennial lifespan with a low sexual reproductive input.

Studies on the Flowering and Maturity in Sesame 1. Flowering Habit by Different Plant Types (참깨 개화, 등숙에 관한 연구 -제 1 보 참깨 초형에 따른 개화특성에 관한 연구-)

  • Lee, J.I.;Kang, C.W.;Lee, S.T.;Son, E.R.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.1
    • /
    • pp.76-83
    • /
    • 1984
  • This experiment was performed to investigate the flowering habit of sesame (Sesamum indicum L.). Sesame varieties tested could be classified into 8 different plant types by their morphological traits such as capsule shape, capsule setting habit and branching types among sesame gene pool of Crop Experiment Station, ORD. The first flower was appeared at the lowest node on main stem. Flowers were appeared progressively toward the tip of the main stem and also toward the tips of branches. The interval of flowering for a node was about one day, but 3 to 8 days for the flowers on the tips. Side flowers started at 4 to 5 nodes lower than those of center flower at the same day. Flowers were beared 2 by 1 node on the middle part of flower setting node (7-9) in mono capsule setting habit in spite of its normal is 1 by 1 node on the other nodes. Flowers were beared opposite direction on each node of stem and flowering toward the tip of main stem composed of cross shape between nodes and spiral, reverse of clockwise direction. We called this habit as cross spiral flowering order and cross spiral phyllotaxis. The first flower on branches was appeared when center flower on the 5th node of main stem began to flower. The branches produced at higher nodes on main stem showed larger flowering periods and more number of flowers than that at lower parts. BTB (Branch, Tricapsule, Bicarpels, 4 Loculi) type showed three capsule setting habits and same flowering period both on main stem and branches while BTQ (Branch, Tricapsule, Quadricarpels, 8 Loculi) type showed three capsule setting habit on main stem and mono-capsule setting habit on branches. In BTQ type, the period of flowering was much shorter on branches than on main stem. Branching type was considered more promising than non branching type for the breeding of early maturing high yielding variety because branching type has the advantage of bearing a lot of flowers in comparatively short flowering period.

  • PDF

Effects of Soil Organic Matter Contents, Paddy Types and Agricultural Climatic Zone on CH4 Emissions from Rice Paddy Field (벼 논에서 토양 유기물 함량, 논 유형 및 농업기후대가 CH4 배출에 미치는 영향)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Woo, Koan-Sik;Song, Seok-Bo;Kang, Jong-Rae;Seo, Myung-Chul;Kwak, Do-Yeon;Oh, Byeong-Gun;Nam, Min-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.887-894
    • /
    • 2011
  • To evaluate the effects of abiotic factors of paddy fields on greenhouse gases (GHGs) emissions from rice paddy fields, $CH_4$ emission amounts were investigated from rice paddy fields by different soil organic matter contents, paddy types, and agricultural climatic zone in Yeongnam area during 3 years. $CH_4$ emission amounts according to soil organic matter contents in paddy field were conducted at having different contents of 5 soil organic matters fields (23.6, 28.7, 31.0, 34.5, and $38.0g\;kg^{-1}$), The highest $CH_4$ emission amount was recorded in the highest soil organic matters plot of $38.0g\;kg^{-1}$. High correlation coefficient (r=$0.963^{**}$) was obtained between $CH_4$ emissions from paddy fields and their soil organic matter contents. According to paddy field types, $CH_4$ emission amounts were investigated at 4 different paddy fields as wet paddy, sandy paddy, immature paddy, and mature paddy. The highest $CH_4$ emissions was recorded in wet paddy (100%) and followed as immature paddy 64.0%, mature paddy 46.8%, and sandy paddy 23.8%, respectively. For the effects of temperature on $CH_4$ emissions from paddy fields, 4 agricultural climatic zones were investigated, which were Yeongnam inland zone (YIZ), eastern coast of central zone (ECZ), plain area of Yeongnam inland mountainous zone (PMZ), and mountainous area of Yeongnam inland mountainous zone (MMZ). The order of $CH_4$ emission amounts from paddy fields by agricultural climatic zone were YIZ (100%) > ECZ (94.6%) > PMZ (91.6%) > MMZ (78.9%). The regression equation between $CH_4$ emission amounts from paddy fields and average air temperature of Jul. to Sep. of agricultural climatic zone was y = 389.7x-4,287 (x means average temperature of Jul. to Sep. of agricultural climatic zone, $R^2=0.906^*$)

Studies on the Natural Distribution and Ecology of Ilex cornuta Lindley et Pax. in Korea (호랑가시나무의 천연분포(天然分布)와 군낙생태(群落生態)에 관한 연구(研究))

  • Lee, Jeong Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.62 no.1
    • /
    • pp.24-42
    • /
    • 1983
  • To develop Ilex cornuta which grow naturally in the southwest seaside district as new ornamental tree, the author chose I. cornuta growing in the four natural communities and those cultivated in Kwangju city as a sample, and investigated its ecology, morphology and characteristics. The results obtained was summarized as follows; 1) The natural distribution of I. cornuta marks $35^{\circ}$43'N and $126^{\circ}$44'E in the southwestern part of Korea and $33^{\circ}$20'N and $126^{\circ}$15'E in Jejoo island. This area has the following necessary conditions for Ilex cornuta: the annual average temperature is above $12^{\circ}C$, the coldness index below $-12.7^{\circ}C$, annual average relative humidity 75-80%, and the number of snow-covering days is 20-25 days, situated within 20km of from coastline and within, 100m above sea level and mainly at the foot of the mountain facing the southeast. 2) The vegetation in I. cornuta community can be divided that upper layer is composed of Pinus thunbergii and P. densiflora, middle layer of Eurya japonica var. montana, Ilex cornuta and Vaccinium bracteatum, and the ground vegetation is composed of Carex lanceolata and Arundinella hirta var. ciliare. The community has high species diversity which indicates it is at the stage of development. Although I. cornuta is a species of the southern type of temperate zone where coniferous tree or broad leaved, evergreen trees grow together, it occasionally grows in the subtropical zone. 3) Parent rock is gneiss or rhyolite etc., and soil is acidic (about pH 4.5-5.0) and the content of available phosphorus is low. 4) At maturity, the height growth averaged $10.48{\pm}0.23cm$ a year and the diameter growth 0.43 cm a year, and the annual ring was not clear. Mean leaf-number was 11.34. There are a significant positive correlation between twig-elongation and leaf-number. 5) One-year-old seedling grows up to 10.66 cm (max. 18.2 cm, min. 4.0 cm) in shoot-height, with its leaf number 12.1 (max. 18, min), its basal diameter 2.24 mm (max. 4.0 mm, min. 1.0 mm) and shows rhythmical growth in high temperature period. There were significant positive correlations between stalk-height and leaf-number, between stalk-height and basal-diameter, and between number and basal diameter. 6) The flowering time ranged from the end of April to the beginning of May, and the flower has tetra-merouscorella and corymb of yellowish green. It has a bisexual flower and dioecism with a sexual ratio 1:1. 7) The fruit, after fertilization, grows 0.87 cm long (0.61-1.31 cm) and 0.8 cm wide (0.62-1.05 cm) by the beginning of May. Fruits begin to turn red and continue to ripen until the end of October or the beginning of November and remain unfading until the end of following May. With the partial change in color of dark-brown at the beginning of the June fruits begin to fall, bur some remain even after three years. 8) The seed acquision ratio is 24.7% by weight, and the number of grains per fruit averages 3.9 and the seed weight per liter is 114.2 gram, while the average weight of 1,000 seeds is 24.56 grams. 9) Seeds after complete removal of sarcocarp, were buried under ground in a fixed temperature and humidity and they began to develop root in October, a year later and germinated in the next April. Under sunlight or drought, however, the dormant state may be continued.

  • PDF