• Title/Summary/Keyword: 화산작용

Search Result 216, Processing Time 0.049 seconds

감포와 연일 지역 벤토나이트 내 일라이트-스멕타이트 혼합층광물의 팽창성 및 X-선 부합성산란영역크기에 관한 연구

  • 강일모;문희수;유장한
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.325-329
    • /
    • 2003
  • 일반적으로 스멕타이트는 온도, 시간, 공극수 내 K 함량 등이 증가하면서 일라이트화 작용을 통하여 일라이트-스멕타이트 혼합층광물(I-S)로 전이된다. 따라서, 벤토나이트(주로 스멕타이트질 광물로 구성된 화산쇄설물의 변질산물)는 지질환경에 따라 스멕타이트 또는 다양한 혼합층비를 갖는 I-S를 함유하게 된다. 이러한 벤토나이트 내 스멕타이트와 일라이트의 혼합층비는 팽창성(expandability)으로 정량화할 수 있다. (중략)

  • PDF

Impact of Meteorological Wind Fields Average on Predicting Volcanic Tephra Dispersion of Mt. Baekdu (백두산 화산 분출물 확산 예측에 대기흐름장 평균화가 미치는 영향)

  • Lee, Soon-Hwan;Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.32 no.4
    • /
    • pp.360-372
    • /
    • 2011
  • In order to clarify the advection and dispersion characteristics of volcanic tephra to be emitted from the Mt. Baekdu, several numerical experiments were carried out using three-dimensional atmospheric dynamic model, Weather and Research Forecast (WRF) and Laglangian particles dispersion model FLEXPART. Four different temporally averaged meteorological values including wind speed and direction were used, and their averaged intervals of meteorological values are 1 month, 10 days, and 3days, respectively. Real time simulation without temporal averaging is also established in this study. As averaging time of meteorological elements is longer, wind along the principle direction is stronger. On the other hands, the tangential direction wind tends to be clearer when the time become shorten. Similar tendency was shown in the distribution of volcanic tephra because the dispersion of particles floating in the atmosphere is strongly associated with wind pattern. Wind transporting the volcanic tephra is divided clearly into upper and lower region and almost ash arriving the Korean Peninsula is released under 2 km high above the ground. Since setting up the temporal averaging of meteorological values is one of the critical factors to determine the density of tephra in the air and their surface deposition, reasonable time for averaging meteorological values should be established before the numerical dispersion assessment of volcanic tephra.

Volcanic Processes of Dangsanbong Volcano, Cheju Island (제주도 당산봉 화산의 화산과정)

  • 황상구
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • Dangsanbong volcano, which is located on the coast of the western promontory of Cheju Island, occurs in such a regular pattern on the sequences which represent an excellent example of an eruptive cycle. The volcano comprises a horseshoe-shaped tuff cone and a younger nested cinder cone on the crater floor, which are overlain by a lava cap at the top of the cinder cone, and wide lava plateau in the moat between two cones and in the northern part. The volcanic sequences suggest volcanic processes that start with Surtseyan eruption, progress through Strombolian eruption and end with Hawaiian eruption, and then are followed by rock fall from sea cliff of the tuff cone and by air fall from another crater. It is thought that the eruptive environments of the tuff cone could be mainly emergent because the present cone is located on the coast, and standing body of sea water could play a great role. It is thought that the now emergent part of the tuff cone was costructed subaerially because there is no evidence of marine reworking. The emergent tuff cone is characterized by distinctive steam-explosivity that results primarily from a bulk interaction between rapidly ascending magma and external water. The sea water gets into the vent by flooding accross or through the top or breach of northern tephra cone. Dangsanbong tuff cone was constructed from Surtseyan eruption which went into with tephra finger jetting explosion in the early stage, late interspersed with continuous upruch activities, and from ultra-Surtseyan jetting explosions producting base surges in the last. When the enclosure of the vent by a long-lived tephra barrier would prevent the flooding and thus allow the vent to dry out, the phreatomagmatic activities ceased to transmit into magmatic activity of Strombolian eruption, which constructed a cinder cone on the crater floor of the tuff cone Strombolian eruption ceased when magma in the conduit gradually became depleted in gas. In the Dangsanbong volcano, the last magmatic activity was Hawaiian eruption which went into with foundation and effusion of basalt lava.

  • PDF

Cauldron Subsidence and Ore Mineralization in the Southeastern kyongsang basin: A review (경상분지 남동부 광상의 분포와 콘트론과의 관계 : 재검토)

  • Yun, Sung-Hyo;Yang, Kyoung-Hee
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.217-225
    • /
    • 1999
  • Nine cauldrons have been recognized in the PVD (Pusan- Taegu Volcano-tectonic Depression) zone covering an area of nearly 7,000 $km^{2}$. They form characteristic landscape features with various mountains in the southeastern Kyongsang basin. Economically important ore deposits are also developed either in the ring fracture zone or the central pluton within the resurgent cauldrons or in the marginal area of the PVD, suggesting that these cauldrons played a major role in the distribution of ore deposits in the southeastern Kyongsang basin. Furthermore, the cauldron subsidences were more frequent with the more felsic volcano-plutonic complex, possibly indicating that the amounts of water and volatile components also acted as a controlling factor to cause the caldera subsidence and to concentrate the ore-forming elements in economic concentrations. The review of the relationship and variations of ore mineralization and cauldron subsidence is rather sketchy, but it provides a skeleton to carry out more detailed and quantitative studies related to temporal and spatial relationships between each cauldron subsidence accompanying its own ore mineralization. In the southeastern Kyongsang basin, additional calderas and associated ore deposits undoubtedly can be discovered through future detailed studies. The concept that cauldron subsidence are an important control for the formation of ore deposits will appear to be vindicated.

  • PDF

Petrological Characteristics of Alkali Rhyolite in the Cheonmunbong of the Mt. Baekdu (백두산 천문봉 일대 알칼리유문암의 암석학적 특징)

  • Kim, Jungsu;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.183-200
    • /
    • 2017
  • Alkali rhyolites in the Cheonmunbong of the Mt. Baekdu stratovolcano show porphyritic texture in the glassy or aphanic groundmass. Major phenocryst is alkali-feldspar, pyroxene, and amphibole, and small amount of microphenocryst is olivine, quartz, opaque mineral (ilmenite). The content of $Fe^{2+}/(Fe^{2+}+Mg^{2+})$ and alkali elements in the mafic minerals is high. Alkali feldspar is classified as sanidine or anorthclase, olivine as fayalite, and pyroxene as ferro-hedenbergite of ferro-augite area. Amphibole belongs to alkali amphibole group, but FeO and $Fe_2O_3$ were not separated, so it is required future studies. Nb(-) anomaly suggesting that slab-derived materials might have played a primary role in the genesis of the rhyolite magma, is not observed. It is noted that they originated in the within plate environment which is not related to subduction zone of the convergent plate boundary. The Mt. Baekdu alkaline rocks are classified into the comendite series. The alkali rhyolites of the summit at Mt. Baekdu shows the disequilibrium mineral assemblages, suggesting that it evolved from thrachytic magma with experience of magma mixing as well as fractional crystallization.

Volcanic stratigraphy and petrology of Cretaceous volcanic rocks in the eastern part of the Euiseong Basin (의성분지 동부에 분포하는 백악기 화산암류의 화산층서와 암석학적 연구)

  • 정종옥;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.238-253
    • /
    • 2000
  • In the eastern part of the Euiseong Basin acidic~intermediate volcanic rocks widely distribute on the Cretaceous sedimentary basement. Coeval granitic rocks and dyke rocks intruded into the volcanic rocks. Volcanic stratigraphy of study area are andesite lava, dacitic lapilli tuff, dacitic flow-banded lava, rhyolitic bedded tuff, rhyolitic massive tuff, dacitic massive lava, rhyolitlc welded tuff occur from the lower to the upper strata. $SiO_2$ content of the volcanic rocks range from 51 to 74 wt.%. With the increase of $SiO_2$, the contents of $TiO_2$, $Al_2$$O_3$, MgO, FeOT MnO, CaO, $P_2$$O_{5}$ decrease but those of $K_2$O increase. The contents of $Na_2$O show dispersive variation. This trend is quite sim-ilar to the major oxide variation in the volcanic rocks from the Yucheon sub-basin. The geochemical natures indicate that the volcanic rocks in the study area are discriminated to the island-arc type high K to medium K calc-alkaline rocks. The compositional variation of the volcanic rocks can be explained by the plagioclase fractionation of the volcanic magmas originated from similar source materials. The volcanic stratigraphy seems to have formed by at least two eruptive sequences of andesitic to rhyolitic and dacitic to rhyolitic magmas which underwent crystallization differentiation.

  • PDF

Chemical Weathering Deterioration of Oya Tuff and Its Alteration to Zeolitic Materials (오야응회암의 지화학적 풍화 열화 특성과 변질작용)

  • Choo Chang Oh;Jeong Gyo-Cheol;Oh Dae Yul;Kim Jong-Tae;Seiki T.
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.381-390
    • /
    • 2004
  • This study was performed to relate the weathering properties of Oyaish tuff from Japan to mechanical properties of rocks in terms of mineralogical alteration and chemistry. The tuff is composed of clinoptilolite, quartz, feldspars, mordenite, opal C-T, and smectite. Since fresh tuff contains approximately $30\~50\%$ zeolite, it is expected that the rock is subjected to weathering process ascribed to water contents on earth surface, significantly reducing mechanical strength of tuff. It is also anticipated that weathering process and properties may be different even in the same rock mass, due to the differences in local mineralogy, chemistry and microtextures in tuff.

Petrology of the Cretaceous volcanic rocks in northern Yucheon Minor Basin, Korea (북부 유천소분지에 분포하는 백악기 화산암류에 대한 암석학적 연구)

  • Sang Wook Kim;Sang Koo Hwang;Yoon Jong Lee;Jae Young Lee;In Seok Koh
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.27-36
    • /
    • 1998
  • The volcanic piles in the northern Yucheon Minor Basin area are the Hagbong basaltic rocks, the Chaeyaksan basaltic rocks, the Jusasan andesitic rocks, the Unmunsa rhyolitic rocks, and the Tertiary voicanics. Stratigraphically, from the lowermost, (1) the Hagbong basaltic rocks are composed mainly of basaltic tuff with two olivine basalt flows intercalated, (2) the Chaeyagsan basaltic rocks are predominantly in tuffs and agglomerate with 3 basaltic flow interlayers, (3) the Jusasan andesitic rocks consist of thick piles of alternated sequences of 4 andesite flows and 5 andesitic tuffs and tuffaceous sediments and (4) the Unmunsa rhyolitic rocks which embed some rhyolite and obsidian are dominant in tuffs such as ash flow and crystal welded tuff. These volcanics reveal distinguishable characteristics in petrochemistry. In discriminating by major elements, the Hagbong and the Chaeyagsan basaltic rocks are alkaline, whereas the latter is also spilitic. In comparison, the volcanic rocks of the Jusasan andesitic rocks and the Tertiary sequences are characteristically calc-alkaline although their distribution is spatially separated. On the other hand, the variations in immobile trace elements indicate that the Hagbong basaltic rocks range from alkaline to calc-alkaline and from WPB/VAB transition to VAB, whereas the Chaeyagsan basaltic rocks are calc-alkaline WPB/VAB transition type and the two others calc-alkaline VAB. In order to show such a variety in their rock series of the volcanic rocks, the environment during their magma generation, magma rising, and post-eruption alteration could be positively considered.

  • PDF

Mineral Chemistry and Geochemistry of the Bentonites Intercalated within the Basal Conglomerates of the Tertiary Sediments in Korea and Their Stratigraphical Implication (제3기층 기저역암에 협재되는 벤토나이트의 광물학, 지화학적 연구 및 층서적 적용)

  • 이종천;이규호;문희수
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.13-23
    • /
    • 2001
  • Bentonite layers are intercalated within the basal conglomerates in the Tertiary sedimentary basins of Kampo, Janggi and Pohang, southeastern Korea. Eighteen samples of the bentonites went through X-ray diffraction, scanning electron microscopy, heavy mineral analyses, chemical analyses and oxygen, hydrogen stable isotope analyses to define the mineralogical characters of the bentonites. Heavy minerals such as zircons, apatites, amphiboles and biotites separated from bentonites show clean and euhedral surfaces, which are the characteristic features of volcanic origin. But biotites from the Chunbook Conglomerate are found as altered and heavily broken flakes which implies longer transportation of these bentonites. $TiO_{2}/Al_{2}O_{3} ratios of <2 $\mu$m particle fractions (the Chunbook Conglomerate 0.031; Janggi 0.029; Kampo 0.025) suggest that those are originated from volcanic tuffs. That is, the higher the value is, the more mafic in chemical compositions of the original tuffs. Authigenic montmorillonite and zeolite minerals were observed by SEM, which indicates diagenesis origin of bentonites. But the samples from the Chunbook Conglomerate showed only chaotically packed clay flakes in the matrix of sands or conglomerates, which implies detrital influence, not authigenic origin. The structural formulae of montmorillonite from these basins reflects their environment of formation. Fe (Ⅵ) can show the redox condition of its past environment and much lower $Fe^{2+}(Ⅵ)/Fe^{3+}(Ⅵ)$ ratios in montmorillonite of the Chunbook Conglomerate imply the greater oxidizing influence. Calculated burial depths from oxygen stable isotope data of the samples from the Chunbook Conglomerate generally fall to the range of 929~963 m whereas the real burial depth of this area is only 530~580 m. This could be explained as the bentonites of the Chunbook conglomerate had not been formed in situ. Discriminant analyses with the data from chemical analyses and structural formulae of montmorillonites show that bentonites from three different basins could definitely be distinguished with each other. This result arises from the different chemical compositions of original volcanic ashes and the difference of sedimentary environments.

  • PDF

Petrochemical Study on the Cretaceous Volcanic Rocks in Kageo island, Korea (가거도(소흑산도)의 백악기 화산암류에 대한 암석화학적 연구)

  • 김진섭;백맹언;성종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • This study reports the results about the petrography and geochemical characteristics of 10 representative volacanic rocks. The Cretaceous volcanic rocks distributed in the vicinity of the Kageo island composed of andesitic rocks, dacitic welded tuff, and rhyolitic rocks in ascending order. Sedimentary rock is the basement in the study area covered with volcanic rocks. Andesitic rocks composed of pyroclastic volcanic breccia, lithic lapilli tuff and cryptocrystallin lava-flow. Most dacitic rocks are lapilli ash-flow welded tuff. Rhyolitic rocks consists of rhyolite tuff and rhyolite lava flow. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic rocks, but dacitic rocks. The variation of major and trace element of the volcanic rocks show that contents of $Al_2O_3$, FeO, CaO, MgO, $TiO_2$ decrease with increasing of $SiO_2$. On the basis of Variation diagrams such as $Al_2O_3$ vs. CaO, Th/Yb vs. Ta/Yb, and $Ce_N/YB_N$ vs. $Ce_N$, these rocks represent mainly differentiation trend of calc-alkaline rock series. On the discriminant diagrams such as Ba/La and La/Th ratio, Rb vs. Y + Nb, the volcanic rocks in study area belongs to high-K Orogenic suites, with abundances of trace element and ternary diagram of K, Na, Ca. According to the tectonic discriminant diagram by Wood, these rocks falls into the diestructructive continental margin. K-Ar ages of whole rocks are from andesite to rhyolite $97.0{\pm}6.8~94.5{\pm}6.6,\68.9{\pm}4.8,\61.5{\pm}4.9~60.7{\pm}4.2$ Ma, repectively. Volcanic rocks in study area show well correlation to the Yucheon Group in terms of rock age dating and geochemcial data, and derived from andesitic calc-alkaline magma that undergone low pressure fractional crystallization dominated plagioclase at <30km.

  • PDF