• Title/Summary/Keyword: 화산분화

Search Result 136, Processing Time 0.024 seconds

Petrology of the Bokyeongsa Volcanics in the northeast Gyeongsang Basin (경상분지 동북부 보경사화산암체의 암석학적 연구)

  • Yun, Sung-Hyo;Lee, Moon-Won;Koh, Jeong-Seon;Kim, Young-La;Han, Mi-Kyeong
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.595-610
    • /
    • 2000
  • This study has been designed to elucidate the petrography and geochemical characteristics of the volcanic rocks and focused on petrogenesis and tectonic environment of the Bokyeongsa volcanics in the northeast Gyeongsang Basin. The Bokyeongsa volcanics consist of the Naeyeonsan tuff which include rock fragment plagioclase, quartz and hornblende and pumice showing welded structures, and felsite. According to the petrochemical data, the Naeyeonsan tuff and felsite are in the range of 68${\sim}$71wt% and 77wt% SiO$_2$ content respectively. The Naeyeonsan tuff belongs to dacite/rhyodacite, and felsite to rhyolite. These volcanics rocks belong to the calc-alkaline rock series on the TAS diagram and the AFM diagram. The variations of major elements of the volcanic rocks show that contene of TiO$_2$, Al$_2$ O$_3$, FeO$^T$, MnO, MgO, CaO are inversely proportional to those of SiO$_2$, but contents of K$_2$O are positively. They represent differentiation trend of calc-alkaline rocks series. In spider disgram of MORB-normalized trace element partterns, contents of K, Rb, Th and Ta are relatively high, but those of Nb, Zr, Hf, Ti, Y and Yb are nearly similar to MORB. In the chondrite-normalized REE patterns, light REEs are more enriched than heavy REEs. The trace element composition and REE patterns suggest that they are typical island-arc calc-akaline volcanic rocks formed in the tectonomagmatic environment of subduction zone under continental margin.

  • PDF

Geochemical Characteristics of the Uljin Granitoids in Northeastern Part of the Yeongnam Massif, Korea (영남육괴 북동부 울진지역 화강암류의 지화학적 특성)

  • Wee, SooMeen;Kim, Ji-Young;Lim, Sung-Man
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.313-328
    • /
    • 2013
  • Jurassic granitoids in the northeastern part of the Yeongnam Massif are possibly the result of intensive magmatic activities that occurred in response to subduction of the proto-Pacific plate beneath the northeast portion of the Eurasian plate. Geochemical studies on the granitic rocks are carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the Uljin granitoids in the northeastern part of the Yeongnam Massif indicate that all of the rocks have the characteristics of calcalkaline series in subalkaline field. The overall major element trends show systematic variations in each granitic body, but the source materials of each granitoids seem to have different chemical composition. The Uljin granitoids are different from other granitic rocks, which distributed vicinity of the study area, in the contents of $Al_2O_3$ and trace elements such as Cr, Co, Ni, Sr, Y and Nb. The Uljin granitoids have geochemical features similar to slab-derived adakites such as high $Al_2O_3$, Sr contents and high Sr/Y, La/Yb ratios, but they have low Y and Yb contents. The major ($SiO_2$, $Al_2O_3$, MgO) and trace element (Sr, Y, La, Yb) contents of the Uljin granitoids fall well within the adakitic field. The Uljin granitoids have similar geochemical characteristics, paleotectonic environments and intrusion ages to those of the Yatsuo plutonic rocks of Hida belt located on northwestern part of Japan. Chondrite normalized REE patterns show generally enriched LREEs ($(La/Yb)_{CN}=10.6-103.4$) and are slight negative to flat Eu anomalies. On the ANK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at the continental margin during the subduction of Izanagi plate in Jurassic period.

Origin and Evolution of Leucogranite of NE Yeongnam Massif from Samcheok Area, Korea (삼척지역 북동 영남 육괴에 분포하는 우백질 화강암의 기원 및 진화)

  • Cheong, Won-Seok;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.16-35
    • /
    • 2008
  • We study metamorphism of metasedimetary rocks and origin and evolution of leucogranite form Samcheok area, northeastern Yeongnam massif, South Korea. Metamorphic rocks in this area are composed of metasedimentary migmatite, biotite granitic gneiss and leucogranite. Metasedimentary rocks, which refer to major element feature of siliclastic sediment, are divided into two metamorphic zones based on mineral assemblages, garnet and sillimanite zones. According to petrogenetic grid of mineral assemblages, metamorhpic P-T conditions are $740{\sim}800^{\circ}C$ at $4.8{\sim}5.8\;kbar$ in the garnet zone and $640-760^{\circ}C$ at 2.5-4.5kbar in sillimanite zone. The leucogranite (Imwon leucogranite) is peraluminous granite which has high alumina index (A/CNK=1.31-1.93) and positive discriminant factor value (DF > 0). Thus, leucogranite is S-type granite generated from metasedimentary rocks. Major and trace element diagram ($R_1-R_2$ diagram and Rb vs. Y+Nb etc.) show collisional environment such as syn-collisional or volcanic arc granite. Because Rb/sr ratio (1.8-22.9) of leucogranites is higher than Sr/Ba ratio (0.21-0.79), leucogranite would be derived from muscovite dehydrate melting in metasedimentary rocks. Leucogranites have lower concentration of LREE and Eu and similar that of HREE relative to metasedimentary rocks. To examine difference of REEs between leucogranites and metasedimentary rocks, we perform modeling using volume percentage of a leucogranite and a metasedimenatry rock from study area and REE data of minerals from rhyolite (Nash and Crecraft, 1985) and melanosome of migmatite (Bea et al., 1994). Resultants of modeling indicate that LREE and HREE are controlled by monazites and garnet, respectively, although zircon is estimated HREE dominant in some leucogranite without garnet. Because there are many inclusions of accessary phases such as monazite and zircon in biotites from metasedimentary rocks. leucogranitic magma was mainly derived from muscovite-breakdown in metasedimenary rocks. Leucogranites can be subdivided into two types in compliance with Eu anomaly of chondrite nomalized REE pattern; the one of negative Eu anomaly is type I and the other is type II. Leucogranites have lower Eu concetnrations than that of metasedimenary rocks and similar that of both type. REE modeling suggest that this difference of Eu value is due to that of components of feldspars in both leucogranite and metasedimentary rock. The tendency of major ($K_2O$ and $Na_2O$) and face elements (Eu, Rb, Sr and Ba) of leucogranites also indicate that source magma of these two types was developed by anatexis experienced strong fractionation of alkali-feldspar. Conclusionally, leucogranites in this area are products of melts which was generated by muscovite-breakdown of metasedimenary rock in environment of continetal collision during high temperature/pressure metamorphism and then was fractionated and crystallized after extraction from source rock.

Petrochemical study on the Daejeon-sa basalt in the Mt. Juwang area, Cheongsong (청송 주왕산지역 대전사 현무암의 암석화학적 연구)

  • 윤성효;이문원;고정선;김영라;안지영
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.84-98
    • /
    • 2000
  • Daejeon-sa basalt in the Mt. Juwang area composed of 12 basalt flows alternate with 9 peperites and each basalt and peperite has the variety of thickness. Peperites yielded in Daejeon-sa basalt are mixed of basalt with reddish shale, of which textural type is globular peperite. Basalts yielded in Daejeon-sa basalt are massive basalt without vesicule, although sometimes vesicules are founded in upper within a flow unit. The basalt has mainly pseudomorph of olivine as phenocryst, and also plagioclase and clinopyroxene phenocryst. Matrix is mainly subophitic texture. The plotting result on the TAS diagram shows these basalts belong to the sub-alkaline, and it can be subdivided into calc-alkaline series on the basis of the diagram of Si02 vs. K20 and of alkali index vs. A1203 diagram. According to plots of wt.% oxides vs. wt.% MgO, abundances of A1203 and CaO increase with decreasing MgO while F ~ dOecre~ase . With decreasing MgO compatible elements decrease while incompatible elements increase. In spider diagram of MORB-normalized trace element patterns, HFS elements are nearly similiar with MORB, but LIL elements are enriched. Especially, contents of Ce, F: and Sm are enriched but Nb is depleted. In the chondrite-normalized REE patterns light REEs are enriched than heavy REEs. Tectomagmatic discrimination diagrams shows basalts in the study area are formed in the tectonomagmatic environment of subduction zone under continental margin. This result accord with characters of chemical composition mentioned above. Cr vs. Y diagram and CeM, vs. Ce diagram show that the primary magma of the basalts may formed by the about 15% partial melting of garnet-peridotite in the mantle wedge. After then, Daejeon-sa basalts may formed from evolved magma undergone mainly olivine fractional crystallization and contarnination of crustal materials before eruption.

  • PDF

Geochemical Characteristics of the Cretaceous Jindong Granites in the Southwestern Part of the Gyeongsang Basin, Korea: Focussed on Adakitic Signatures (경상분지 서남부에 분포하는 백악기 진동화강암의 지화학적 특성:아다카이틱(adakitic)한 특성을 중심으로)

  • Wee, Soo-Meen;Choi, Seon-Gyu;Ryu, In-Chang;Shin, Hong-Ja
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.555-566
    • /
    • 2006
  • Major, trace and rare earth elements data of the Cretaceous Jindong granitic rocks were investigated in order to constrain the magma source characteristics and to establish the paleotectonic environment of the southwestern part of the Gyeongsang Basin. Geochemical signatures of the granitic rocks from the study area indicate that all of the rocks have characteristics of calc-alkaline series in the subalkaline field, and progressively shift from metaluminous to peraluminous with differentiation. In the variation diagrams, the overall geochemical features of the granites show systematic variations in major and trace elements. Chondrite normalized REE patterns show generally enriched LREE((La/Yb)c=4.2-12.8) and slight negative to flat Eu anomalies. Rb-Sr isotope data of the Jindong granites show that the whole rock age and Sr initial ratio are $114.6{\pm}9.1Ma$ and 0.70457, respectively. The Sr initial ratio of the Jindong granites is very similar to those of the Creataceous granites from Masan, Kimhae and Busan area($^{87}Sr/^{86}Sr=0.7049-0.707$). These results suggest that the magma have the mantle signature and intruded into the area during the early Cretaceous age. The Jindong granites have higher $Al_{2}O_{3},\;Na_{2}O$, Sr and lower $K_{2}O$, Y concentrations compared with typical calc-alkaline granitic rocks. These adakitic signatures are similar to those of adakitic pluton on Kyushu Island, southwest Japan arc. On the ANK vs. ACNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type, VAG granite. Interpretations of the geochemical characteristics of the granitic rocks favor their emplacement at continental margin during the subduction of Izanagi plate.

Prediction of the Area Inundated by Lake Effluent According to Hypothetical Collapse Scenarios of Cheonji Ground at Mt. Baekdu (백두산 천지 붕괴 가상 시나리오 별 천지못 유출수의 피해영향범위 예측)

  • Suh, Jangwon;Yi, Huiuk;Kim, Sung-Min;Park, Hyeong-Dong
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.409-425
    • /
    • 2013
  • This study presents a prediction of a time-series of the area inundated by effluent from Heavenly Lake caused by ground behavior prior to a volcanic eruption. A GIS-based hydrological algorithm that considers the multi-flow direction of effluent, the absorption and storage capacity of the ground soil, the storage volume of the basin or the depression terrain, was developed. To analyze the propagation pattern, four hypothetical collapse zones on the cheonji ground were set, considering the topographical characteristics and distributions of volcanic rocks at Mt. Baekdu. The results indicate that at 3 hours after collapse, for both scenarios 1 and 2 (collapses of the entire/southern boundary of cheonji), a flood hazard exists for villages in China, but not for those on the North Korean side of the mountain, due to the topographical characteristics of Mt. Baekdu. It is predicted that villages in both North Korea and China would be significantly damaged by flood inundation at 3 hours elapsed time for both scenarios 3 and 4 (collapses on the southern boundary of cheonji and on the southeastern-peak area).

Petrological study on the intermediate to mafic lavas distributed in Janggi area (1): General geology and petrochemical characteristics (장기 지역에 분포하는 중성~염기성 용암에 관한 암석학적 연구(1): 일반 지질 및 암석화학적 특징)

  • 박주희;김춘식;김진섭;성종규;김인수;이준동;백인성
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.149-170
    • /
    • 1999
  • The volcanic lavas in the Janggi area are plotted on basalt, basaltic andesite and andesite field (SiO$_2$; 48-61 wt.%) in the TAS diagram and belong to subalkaline series. Nineteen chenmical analyses of lavas show two distinct differentiation trends; tholeiitic and calc-alkaline. Calc-alkaline basaltic andesites composed of plagioclase and two-pyroxenes (cpx, opx) in their phenocrysts. Tholeiitics basaltic lavas can be classified into two sub-types. The one is porphyritic basalts composed of plagioclase, clinopyroxene and olivine phenocryst, and the other is aphyric basalt and more evolved lavas (aphyric basaltic andesite) with the same mineral phases. Incompatible elements and REE patterns show the enrichment of LILE and depletion of HFSE. This characteristics indicate that these lavas are evolved from the magmas related to subduction. Howeverm calc-alkaline basaltic andesite lavas show that slightly higher enrichment of LILE and the depletion of HFSE than those of tholeiitic basaltic lavas. On the tectonic discriminant diagram such as Ba/Th and La/Th ratios, calc-alkaline basaltic andesite lavas belong to orogenic medium to high-K suites, whereas tholeiitic basaltic lavas belong to medium-K suites and MORB. On the other diagram, such as La/Yb vs. Th/Yb, the volcanic lavas in the study area plotted in the field of oceanic arc basalt. Tholeiitic basaltic lavas are located in more prinitive environment than calc-alkaline andesitic lavas.

  • PDF

Geochemical Characteristics of the Jurassic Chunyang Granites in Northeastern Part of the Yeongnam Massif (영남육괴에 분포하는 쥐라기 춘양화강암의 지화학적 특성)

  • Kang, Minyoung;Kim, Yunji;Wee, Soomeen
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.49-63
    • /
    • 2017
  • The geochemical results of the Chunyang granites located in the northeastern part of the Yeongnam Massif, indicate that these rocks have characteristics of calc-alkaline series in the sub-alkaline field, I-type and peraluminous. Most of the geochemical features in major and trace elements show systematic trends, which are similar to differentiation trends of the general Jurassic granitoids in South Korea. The Chunyang granite is largely enriched in mobile LILE (Sr, K, Rb and Ba) relatively immobile HFSE. They show LREE enriched patterns [$(La/Lu)_{CN}=41.8-73.2$] with a slightly negative Eu anomaly [$(Eu/Eu^*)_{CN}=0.89-1.10$]. There are no meaningful correlations in major and trace elements between the Chunyang granites and the Buseok plutonic rock which is the main unit of the Yeongju batholith. This result may suggest that these two plutonic rocks be not derived from the same parent magma. Tectonic discrimination diagrams indicate that the Chunyang granite was formed in volcanic arc environments. These geochemical characteristics results suggest that the Chunyang granite must have been generated at the active continental margin during the subduction of the Jurassic proto-Pacific plate.

Studies on Forest Soils in Korea (I) (한국(韓國)의 삼림토양(森林土壤)에 관(關)한 연구(硏究)(I))

  • Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.47 no.1
    • /
    • pp.52-61
    • /
    • 1980
  • This study is carried out to learn the properties of forest soils in Korea and propose the reasonable management methods of forest land. Among 178 soil series surveyed until now in Korea forest soils include 64 series broken down according to the weathered products into 5 categories such as residual materials on mountain and hill, residual materials on rolling and hill, colluvial materials on local valley and fans, alluvial materials and volcanic ash soils. What discussed in this paper are classification system, parent rocks, texture class and drainage conditions of Korean forest soils. The characteristics of Korean forest soil properties classified in U.S.D.A. soil classification system are as follows: 1. Residual soils on mountain and hill (29 soil series) are almost Lithosols without any distinct soil profile development. They have loamy skeletal (11 series), coarse loamy (5 series), fine loamy (3 series), and fine clayey soils (3 series). Their drainage conditions are somewhat excessively drained in 16 series and well drained in 7 series. 2. Residual soils on rolling and hill (19 series) are Red-Yellow Podzolic soils with well developed soil profiles. They have coarse and fine loamy texture in 12 series and fine clayey texture in 5 series mostly with well drained condition. 3. Colluvial soils on local valley and fans (13 series) include mostly Regosols and some Red-Yellow Podzolic Soils and Acid Brown Forest Soils. They have loamy skeletal (4 series), coarse loamy (3 series), fine loamy (3 series), and fine clayey soils (2 series) with well drained condition. 4. Soil textures of weathered products of parent rocks are as follows: 1) Parent rocks producing coarse texture soils are rhyolite, granite gneiss, schist, shale, sandstone, siltstone, and conglomerate. 2) Parent rocks producing fine and heavy texture soils are limestone, basalt, gabbro, and andesite porphyry. 3) Granite is a parent rock producing various textured soils.

  • PDF

Interpretation Method of Eco-Cultural Resources from the Perspective of Landscape Ecology in Jeju Olle Trail (제주 올레길 생태문화자원 경관생태학적 해석기법 연구)

  • Hur, Myung-Jin;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.128-140
    • /
    • 2021
  • This study applied the theory of Landscape Ecology to representative resources of Jeju Olle-gil, which is a representative subject of walking tourism, to identify ecological characteristics and to establish a technique for landscape ecological analysis of Olle-gil resources. Jeju Olle Trail type based on the biotope type, major land use, vegetation status around Olle Trail and roads were divided into 12 types. Based on the type of ecological tourism resource classification, the Jeju Olle-gil walking tourism resource classification was divided into seven types of natural resources and seven types of humanities resources, and each resource was characterized by Geotope, Biotope, and Anthropopope, just like the landscape ecology system. Geotope resources are strong in landscape characteristics such as coast and beach, rocks, bedrocks, waterfalls, geology and Jusangjeolli Cliff, Oreum and craters, water resources, and landscape viewpoints. The Biotope resources showed strong ecological characteristics due to large tree and protected tree, Gotjawal, forest road and vegetation communities, biological habitat, vegetation landscape view point. Antropotope include Culture of Jeju Haenyeo and traditional culture, potting and lighthouses, experience facilities, temples and churches, military and beacon facilities, other historical and cultural facilities, and cultural landscape views. Jeju Olle Trail The representative resources for each type of Jeju Olle Trail are coastal, Oreum, Gotjawal, field and Stonewall Fencing farming land, Jeju Village and Stone wall of Jeju. In order to learn about the components and various functions of the resources representing the Olle Trail's ecological culture, the landscape ecological technique was interpreted. Looking at the ecological and cultural characteristics of coastal, the coast includes black basalt rocks, coastal vegetation, coastal grasslands, coastal rock vegetation, winter migratory birds and Jeju haenyeo. Oreum is a unique volcanic topography, which includes circular and oval mountain bodies, oreum vegetation, crater wetlands, the origin and legend of the name of Oreum, the legend of the name of Oreum, the culture of grazing horses, the use of military purposes, the object of folk belief, and the view from the summit. Gotjawal features rocky bumps, unique microclimate formation, Gotjawal vegetation, geographical names, the culture of charcoal being baked in the past, and bizarre shapes of trees and vines. Field walls include the structure and shape of field walls, field cultivation crops, field wall habitats, Jeju agricultural culture, and field walls. The village includes a stone wall and roof structure built from basalt, a pavilion at the entrance of the village, a yard and garden inside the house, a view of the lives of local people, and an alleyway view. These resources have slowly changed with the long lives of humans, and are now unique to Jeju Island. By providing contents specialized for each type of Olle Trail, tourists who walk on Olle will be able to experience the Olle Trail in depth as they learn the story of the resources, and will be able to increase the sustainable use and satisfaction of Jeju Olle Trail users.