• Title/Summary/Keyword: 화면간 화면 간 예측 부호화

Search Result 84, Processing Time 0.02 seconds

An Efficient Weight Signaling Method for BCW in VVC (VVC의 화면간 가중 양예측(BCW)을 위한 효율적인 가중치 시그널링 기법)

  • Park, Dohyeon;Yoon, Yong-Uk;Lee, Jinho;Kang, Jungwon;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.346-352
    • /
    • 2020
  • Versatile Video Coding (VVC), a next-generation video coding standard that is in the final stage of standardization, has adopted various techniques to achieve more than twice the compression performance of HEVC (High-Efficiency Video Coding). VVC adopted Bi-prediction with CU-level Weight (BCW), which generates the final prediction signal with the weighted combination of bi-predictions with various weights, to enhance the performance of the bi-predictive inter prediction. The syntax element of the BCW index is adaptively coded according to the value of NoBackwardPredFlag which indicates if there is no future picture in the display order among the reference pictures. Such syntax structure for signaling the BCW index could violate the flexibility of video codec and cause the dependency issue at the stage of bitstream parsing. To address these issues, this paper proposes an efficient BCW weight signaling method which enables all weights and parsing without any condition check. The performance of the proposed method was evaluated with various weight searching methods in the encoder. The experimental results show that the proposed method gives negligible BD-rate losses and minor gains for 3 weights searching and 5 weights searching, respectively, while resolving the issues.

Forward rate control of MPEG-2 video based on distortion-rate estimation (왜곡-비트율 추정에 근거한 MPEG-2 비디오의 순방향 비트율 제어)

  • 홍성훈;김성대;최재각;홍성용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2010-2024
    • /
    • 1998
  • In video coding, it is important to improve the average picture quality as well as to maintain cosistent picture quality between consecutive pictures. In this paper, we propose a distortion-rate estimation method for MPEG-2 video and a forward rate control method, using the proposed estimation result, to be able to obtain the improved and consistent picture quality of CBR (Constant Bit Rate) encoded MPEG-2 video. The proposed distortion-rate estimation enable us to predict the distortion and the bits generated from an encoded picture at a given quantization step size and vice versa. The most attactive features of proposed distortion-rate estimation are its accuracy and low computational complexity enough to be applied to the practical video coding. In addition, the proposed rate control first determined a quantization parameter per frame by following procedure: distortion-rate estimation, target bit allocation, distortion constraint and VBV(Video Buffer Verification) constraint. And then this quantization parameter is applied to the encoding so that improved and consisten picture quality can be obtained. Furthermore the proposed rate control method can solve the error propagation problem caused by scene change or anchor picture degradation by using the B-picture skipping and the guarantee of the minimum bit allocation for the anchor picture. Experimental results, comparing the proposed forward rate control method with TM5 method, show that the proposed method makes more improed and consistent picture quality than TM5.

  • PDF

Fast Mode Decision Algorithm for Scalable Video Coding (SVC) Using Directional Information of Neighboring Layer (스케일러블 비디오 코딩에서 방향성 정보를 이용한 모드 결정 고속화 기법)

  • Jung, Hyun-Ki;Hong, Kwang-Soo;Kim, Byung-Gyu;Kim, Chang-Ki;Yoo, Jeong-Ju
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.108-121
    • /
    • 2012
  • As Scalable Video Coding (SVC) is a video compression standard extended from H.264/AVC, it is a way to provide scalability in terms of temporal, spatial and quality. Although the compression efficiency of SVC is increased due to the scalability in many aspect, it is essential to reduce the complexity in order to efficiently use because the complexity is relatively increased. To reduce the complexity of SVC in the paper, we propose fast mode decision algorithm to reduce the complexity of encoding process using direction information of B-picture by efficiently performing inter-layer prediction. The proposed algorithm is a fast mode decision algorithm that makes different from detection mode number of forward and backward, bi-direction in the way using best mode of base-layer up-sampled after simply SKIP mode detection using the direction information of best mode of base-layer up-sampled. The experimental results show that the proposed algorithm approach can achieve the maximum computational time saving about 53% with almost no loss of rate distortion (RD) performance in the enhancement layer.

An Early Termination Algorithm for Efficient CU Splitting in HEVC (HEVC 고속 부호화를 위한 효율적인 CU 분할 조기 결정 알고리즘)

  • Goswami, Kalyan;Kim, Byung-Gyu;Jun, DongSan;Jung, SoonHeung;Seok, JinWook;Kim, YounHee;Choi, Jin Soo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2013
  • Recently, ITU-T/VCEG and ISO/IEC MPEG have started a new joint standardization activity on video coding, called High Efficiency Video Coding (HEVC). This new standard gives significant improvement in terms of picture quality for high resolution video. The main challenge in this upcoming standard is the time complexity. In this paper we have focused on CU splitting algorithm. We have proposed a novel algorithm which can terminate the CU splitting process early based on the RD cost of the parent and current level and the motion vector value of the current CU. Experimental result shows that our proposed algorithm gives on average more than about 10% decrement in time over ECU [8] with on average 1.78% of BD loss on the original.