• Title/Summary/Keyword: 홍수 피해 저감

Search Result 375, Processing Time 0.02 seconds

Study on Climate Change Impacts on Hydrological Response using a SWAT model in the Xe Bang Fai River Basin, Lao People's Democratic Republic (기후변화에 따른 라오스인민공화국의 시방파이 유역의 수문현상 예측에 대한 연구: SWAT 모델을 이용하여)

  • Phomsouvanh, Virasith;Phetpaseuth, Vannaphone;Park, Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.6
    • /
    • pp.779-797
    • /
    • 2016
  • A calibrated hydrological model is a useful tool for quantifying the impacts of the climate variations and land use/land cover changes on sediment load, water quality and runoff. In the rainy season each year, the Xe Bang Fai river basin is provisionally flooded because of typhoons, the frequency and intensity of which are sensitive to ongoing climate change. Severe heavy rainfall has continuously occurred in this basin area, often causing severe floods at downstream of the Xe Bang Fai river basin. The main purpose of this study is to investigate the climate change impact on river discharge using a Soil and Water Assessment Tool (SWAT) model based on future climate change scenarios. In this study, the simulation of hydrological river discharge is used by SWAT model, covering a total area of $10,064km^2$ in the central part of country. The hydrological model (baseline) is calibrated and validated for two periods: 2001-2005 and 2006-2010, respectively. The monthly simulation outcomes during the calibration and validation model are good results with $R^2$ > 0.9 and ENS > 0.9. Because of ongoing climate change, three climate models (IPSL CM5A-MR 2030, GISS E2-R-CC 2030 and GFDL CM3 2030) indicate that the rainfall in this area is likely to increase up to 10% during the summer monsoon season in the near future, year 2030. As a result of these precipitation increases, the SWAT model predicts rainy season (Jul-Aug-Sep) river discharge at the Xebangfai@bridge station will be about $800m^3/s$ larger than the present. This calibrated model is expected to contribute for preventing flood disaster risk and sustainable development of Laos

  • PDF

The Error Analysis of Scale Effect for Dam Submerged Area and the Surrounded Regions (댐 수몰 및 주변지역의 축척 규모에 따른 오차분석)

  • Lee, Geun-Sang;Choi, Yun-Woong;Hwang, Eui-Ho;Chae, Young-Gang
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.43-53
    • /
    • 2010
  • A dam is effective in stable supply of water required in daily life and reduction of damage from floods. hut a lot of land or houses arc submerged due to the construction of a darn heavily affecting environment in surrounding areas. In order to improve and support daily life environment. surrounding a dam, many projects have been conducted. and the study has focused on analyzing bow to calculate error characteristics of scale effect for submerged area by using GIS spatial overlay. First, as a result of areal error in submerged area by scale based on a 1/3,000 digital topographic map, it was found that the 1/5,000 digital topographic map is 9.5 times, 9.0 times and 10.5 times more accurate than the 1/25,000 digital topographic map, respectively, in the total of areal error, standard error and areal error for submerged area. Second, as a result of analysis on areal error in areas surrounding a dam, it has been found that Jinan-eup in Jinan-gun registered the largest difference in area within 2km and 2~5km catchment area by recording 13.8 times and 20.6 times, respectively, in the 1/5,000 digital topographic map compared to the 1/25,000 digital topographic map. In addition, in areas out of catchment area within 2km, the area of occupation was very small, so there were no characteristics in error. The out of catchment area, Nami-myeon in Geumsan-gun recorded the largest errors of 31.8 times. Finally, it was found that the ratio of the total areal error in area surrounding a dam, standard error and the total areal error in the entire area using 1,5000 digital topographic map is 7.4 times, 11.8 times and 7.4 times more accurate than the 1/25,000 digital topographic map.

Research Trends on Soil Erosion Control Engineering in North Korea (북한의 사방공학 분야 연구동향 분석)

  • Kim, Kidae;Kang, Minjeng;Kim, Dongyeob;Lee, Changwoo;Woo, Choongshik;Seo, Junpyo
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.469-483
    • /
    • 2019
  • North Korea has experienced floods and sediment-related disasters annually since the 1970s due to deforestation. It is of paramount importance that technologies and trends related to forest restoration and soil erosion control engineering be properly understood in a bid to reduce damage from sediment-related disasters in North Korea, and to effect national territorial management following unification. This paper presents a literature review and bibliometric analysis including 146 related articles published in North Korea. First, we analyzed the textual characteristics of the articles. We then employed the VOSviewer software package to classify the research topic and analyzed this topic based on the time change. The results showed that articles on the topic have consistently increased since the 1990s. In addition, research related to soil erosion control engineering has been classified into four subjects in North Korea: (i) assessment of hazard area on soil erosion and soil loss, sediment related-disasters; (ii) hydraulic and hydrologic understanding of forests; (iii) reasonable construction of soil erosion control structures; and (iv) effects and management plan of soil erosion control works. The proportion of research related to the (ii) hydraulic and hydrologic understanding of forests had been significant during the reign of Kim Ilsung. However, the proportion of research related to the (i) assessment of hazard area on soil erosion and soil loss, sediment-related disasters, increased during the reign of Kim Jongil and Kim Jongun. Using these results, our analysis indicated that an interest in and need for soil erosion control engineering in North Korea has continually increased. The results of this study are expected to serve as a basis for preparing forestry cooperation between North and South Korea, and to serve as essential data for better understanding soil erosion control engineering in North Korea.

A Study of Fish Community on Up and Downstream of Hwabuk Dam Under Construction in the Upper Wie Stream. (위천 상류에 건설 중인 화북댐 상 하류 어류군집에 관한 연구)

  • Seo, Jin-Won;Kim, Hee-Sung
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.260-269
    • /
    • 2009
  • Hwabuk Dam has been under construction to reduce flood damage in Nakdong River watershed and to supply stable water for middle area of Gyeongbuk Province. Therefore, fish investigation in up and downstream of the dam was conducted from 2004 to 2008 in order to determine any negative effect on fish community due to dam construction and to use as fundamental data for conserving species diversity and maintaining stream health. According to data analysis on water quality, temperature, dissolved oxygen, pH, suspended solids, and total E-coli had seasonal variation, but they did not significantly differ in sites. However, biological and chemical oxygen demand, chlorophyll-a, nitrogen, and phosphorus representing organic matter and nutrient concentration were higher in upper site and decreased to lower site so that they differed by site. Concentration of arsenic among the heavy metals was less than 0.05 mg $L^{-1}$, which is regulated for protection of human health in water quality standard, except for 0.092 mg $L^{-1}$ in June 2005. During the study period, the total number of fish caught from the 6 sites was 10,263 representing 7 families 19 species. Among them, dominant and subdominant species were Korean chub (Zacco koreanus, 62.5%) and Chinese minnow (Rhynchocypris oxycephalus, 10.6%) which inhabit mostly in mid and upper streams, Korea. Among the 19 species, Korean endemic species were 9 species (47.4%) including Korean slender gudgeon (Squalidus gracilis majimae), Korean dark sleeper (Odontobutis platycephala), and Korean shiner (Coreoleuciscus splendidus). There was several individuals of the $1^{st}$-class endangered species, Naktong nose loach (Koreocobitis nahtongensis), caught in 2005${\sim}$2007, and no introduced species of fish was found in entire sampling period. According to result of community analysis, dominance index decreased toward lower site, but diversity and richness indices increased toward lower site. The equation of length-weight relationship on the dominant species was TW=0.000003$(TL)^{3.2603}$. The parameter b in the equation was greater than 3.0 indicating good nutritional condition in the populations. Compared to populations of Korean chub in other streams, the population in Hwabuk Dam watershed had higher mean of condition factor by size indicating better growth rate. With fish fauna and multi-metric health assessment model in each sampling attempt, index of biotic integrity (IBI) was evaluated and it resulted mostly in good (26${\sim}$35) and excellent (36${\sim}$40) condition in all sites, and the mean of IBI was the highest in site 5. The results indicate that it is very important to study not only environmental impact assessment with fish composition but also stream health assessment in order to conserve healthy aquatic ecosystem.

The Influence Analysis of Support Working Expenses for Yongdam Dam Area Considering the Resolution of Digital Topographic Map (수치지형도 해상도를 고려한 용담댐 주변지역 지원사업비 영향 분석)

  • Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.523-531
    • /
    • 2010
  • A dam is effective in stable supply of water required in daily life and reduced damage from floods, but there are problems as a lot of land or houses are submerged. Therefore many projects have been conducted in order to improve and support daily life environment surrounding a dam. This study has focused on analyzing how to calculate support working expenses for Dam area by using GIS spatial overlay in addition to effects of scale of a topographic map and reached the following conclusion. First, as a result of areal error in submerged area by scale based on a 1/3,000 digital topographic map, it has been found that a 1/5,000 digital topographic map is 9.5 times more accurate than a 1/25,000 digital topographic map in the total of areal error. Second, as a result of areal error in area surrounding a dam, it has been found that a 1/5,000 digital topographic map is 7.4 times more accurate than a 1/25,000 digital topographic map in the total of areal error. Third, as a result of error of support expense for submerged area, it has been found that a 1/5,000 digital topographic is 15.9 times, 14.7 times and 15.9 times more effective than a 1/25,000 digital topographic map in terms of the total error of support expense, standard error and the total support expense error on the entire project costs in submerged area. In addition, as a result of analysis on error of support expense for area surrounding a dam, it has been found that a 1/5,000 digital topographic map was 10.7 times, 9.6 times and 10.6 times more effective, respectively, in the total error of support expense, standard error and the total error of support expense for the entire project costs in area surrounding a dam compared to a 1/25,000 digital topographic map. Lastly, as a result of error of the entire project costs for area surrounding a dam, it has been found that a 1/5,000 digital topographic map was 1.4 times, 1.3 times and 1.4 times more effective, respectively, in the total error of support expense, standard error and the total error of the entire project costs compared to a 1/25,000 digital topographic map, but it was not much different from the result of calculating areal error in submerged area or area surrounding a dam because population item didn't consider areal concept.