• Title/Summary/Keyword: 홍수예측모형

Search Result 732, Processing Time 0.035 seconds

Flash flood risk indicator for ungauged area of Seoul metropolitan region (수도권 미계측지역에 대한 돌발홍수위험도 산정 연구)

  • Lee, Byong Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.94-94
    • /
    • 2016
  • 돌발홍수는 수십 $km^2$ 이하의 유역에서 강우가 발생한 후 6시간 이내의 단시간에 홍수징후가 나타나는 현상으로 정의될 수 있다. 돌발홍수를 잘 예측하기 위해서는 국지적으로 발생하는 집중 호우를 잘 예측해야 하며 유역내 공간적인 수문반응해석을 통해 돌발홍수를 예측하는 기술이 요구된다. 본 연구에서는 유역내 공간적인 수문반응을 잘 모의하기 위해 TOPLATS 지표해석모형을 이용하였다. TOPLATS(TOPMODEL based Land Atmosphere Transfer Scheme) 모형은 물수지와 에너지수지를 통해 단위격자에 대한 실제증발산량, 토양수분량, 지하수면깊이, 지표유출량, 잠열, 현열, 지열, 순복사량 등을 모의하며 소유역단위로 지하수면깊이를 재분포시키는 특성을 가지고 있다. 돌발홍수 위험도를 산정하기 위해 실제 돌발홍수 피해사례를 조사하였으며 피해지역과 대응되는 격자 수문성분과의 상관성 분석을 통해 돌발홍수 위험도 모형을 산정하였다. 대상지역은 수도권 전체지역을 모의하기 위해 한강, 임진강, 안성천 유역을 대상지역으로 선정하였다. 수도권 지역은 약 11,930 km2이며 2009~2012년동안 총 38건의 돌발홍수 피해사례가 신고되었다. 기상자료는 기상청 AWS와 ASOS 시단위 강우, 기온, 상대습도, 풍속, 일조, 기압자료를 이용하였다. 돌발홍수 피해사례 38건에 대해 대응되는 모의격자의 수문성분을 분석하였으며 27(71%)에서 구조요청시점에 대해 강우량, 지표유출량, 토양수분량, 지하수면깊이가 적절하게 모의되는 것을 확인하였다. 강우조건에 따른 돌발홍수 위험도는 구조요청시점 기준 선행시간 4~6시간까지 71~87%, 구조요청시점으로 한정된 0시간에서는 42~52%로 나타났다. 이상의 결과로부터 지표해석모델을 이용한 격자 수문성분과 통계적 돌발홍수지수모형으로부터 산정된 돌발홍수 위험도는 산지 미계측지역에 대한 돌발홍수를 예측하는데 활용될 수 있을 것으로 판단된다.

  • PDF

Expectation Analysis of Inundation Using Distributed Model in NamgangDam Basin (분포형 모형을 적용한 남강댐 유역의 침수예측 분석)

  • Park, Mi Ri;Park, Sung Je;Lee, Young Kune
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.584-584
    • /
    • 2015
  • 최근 기후변화로 인한 국지성 집중호우와 태풍 등으로 홍수피해가 급증하고 있음에 따라 침수지역에 대한 공간적인 분석과 사전 예측으로 피해를 최소화하려는 노력이 필요하다. 따라서 본 연구에서는 소유역 별 평균화된 매개변수로 홍수량을 산정하는 집중형 모형이 아닌 분포형 모형을 적용하여 남강댐 유역의 유출량 산정 및 침수예측을 분석하였다. 분포형 모형은 격자체계를 기반으로 유역에 각 격자별 공간적 특성이 반영된 매개변수를 적용하므로 유역의 특성을 효과적으로 반영하므로 집중형 모형보다 정확한 해석이 가능하다. DEM, 토양도, 토지피복도 등의 격자크기 $240{\times}240$의 지형공간 자료를 ArcGIS를 이용하여 남강댐유역의 Flow direction, 경사도, 하도경사, 불투수율, 유효공극률, 조도계수, 토양심도, 수리전도도, 토양흡인수두 등의 수문매개변수를 추출하였다. 강우 자료의 경우 티센(Thiessen)법에 의해 선정된 남강댐유역 주변의 장수, 거창, 진주, 합천, 산청, 남원 강우관측소의 100년빈도 확률강우량 산정하여 24시간 확률강우를 3분위 Huff 분포시킨 후 강우의 공간적 통계특성을 반영하는 크리깅(Kriging)기법으로 적용하여 강우보간을 실시하였다. 침수예측을 위해 $Vflo^{TM}$모형을 이용해 48시간의 강우모의시간 홍수수문곡선 유도 및 홍수량 산정하였으며, 시간에 따른 침수 시뮬레이션하여 침수예측도를 작성하였다. 작성 시 침수심의 정도에 따라 5개의 구간으로 분류해 침수위험지역을 확인 할 수 있도록 도식화하였다. 본 연구에서는 남강댐유역의 침수위험지역을 개략적으로 예측할 수 있었으며, 추후 연구에서는 보다 조밀한 격자크기와 강우를 이용하여 분석한다면 향후 피난 정보 제공과 홍수재해지도 작성, 홍수방지 시설물 건설 또는 홍수보험계획 등에 응용이 될 것으로 판단된다.

  • PDF

Dam Inflow Forecasting for Short Term Flood Based on Neural Networks in Nakdong River Basin (신경망을 이용한 낙동강 유역 홍수기 댐유입량 예측)

  • Yoon, Kang-Hoon;Seo, Bong-Cheol;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.1
    • /
    • pp.67-75
    • /
    • 2004
  • In this study, real-time forecasting model(Neural Dam Inflow Forecasting Model; NDIFM) based on neural network to predict the dam inflow which is occurred by flood runoff is developed and applied to check its availability for the operation of multi-purpose reservoir Developed model Is applied to predict the flood Inflow on dam Nam-Gang in Nak-dong river basin where the rate of flood control dependent on reservoir operation is high. The input data for this model are average rainfall data composed of mean areal rainfall of upstream basin from dam location, observed inflow data, and predicted inflow data. As a result of the simulation for flood inflow forecasting, it is found that NDIFM-I is the best predictive model for real-time operation. In addition, the results of forecasting used on NDIFM-II and NDIFM-III are not bad and these models showed wide range of applicability for real-time forecasting. Consequently, if the quality of observed hydrological data is improved, it is expected that the neural network model which is black-box model can be utilized for real-time flood forecasting rather than conceptual models of which physical parameter is complex.

A study on the correction of rainfall-runoff model using AI models (AI 모형을 이용한 강우-유출 모형 보정에 관한 연구)

  • Haneul Lee;Seong Cheol Shin;Joonhak Lee;Hung Soo Kim;Soojun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.96-96
    • /
    • 2023
  • 지구온난화는 집중호우 및 태풍의 빈도와 규모를 증가시키는 원인이 되었으며, 전 세계적으로 홍수로 인한 피해가 발생하고 있다. 한국에서는 2020년 홍수로 인하여 1조 이상의 피해가 발생하였으며, 2021년에는 호우로 인한 피해가 60%이상을 차지하였다. 과거에는 구조적인 대책을 수립하기 위하여 경제성 높은 치수사업을 결정하는 연구들이 수행되었다. 하지만 치수 사업은 지구온난화를 가속시키게 되며 그로 인해 집중호우의 빈도와 규모가 증가하는 악순환이 발생하게 된다. 따라서 최근에는 비구조적 대책인 홍수 예경보를 수행하여 홍수에 대응하고자 홍수 예경보 지점을 확대하고 있다. 홍수 예경보는 강우-유출 모형을 이용하여 유출량을 산정하고, 일정 수위를 초과하면 홍수 경보가 발령된다. 하지만 강우-유출 모형의 경우 많은 매개변수 값을 요구하며, 강우 사상에 따라 다른 매개변수를 산정하는데 많은 시간을 필요로 한다. 따라서 특정 강우 사상에 따라 매개변수 값을 고정하여 유출량을 산정하고 있으나, 이는 실제 유출량과 예측 유출량과의 오차가 발생할 수 있다. 따라서 본 연구에서는 강우-유출 모형의 오차를 AI로 예측하여 유출량을 보정하는 연구를 수행하고자 하였다. 강우-유출 모형에서는 유출량을 산정하고 그에 따른 오차를 생성하게 된다. 그리고 산정된 오차들을 이용하여 오차를 예측할 수 있는 AI 모형을 개발하게 된다. 최종적으로 강우-유출 모형의 유출량과 AI 모형의 오차가 결합되어 보정된 유출량을 산정하게 된다. 강우-유출 모형과 AI 모형이 결합된 Hybrid model은 기존의 단일로 사용했을 때의 발생할 수 있는 강우-유출 모형의 문제를 개선할 수 있을 것으로 판단된다.

  • PDF

The Flood Forecasting Model for the In-do Brdg. by the Multi-regression Analysis between the Water-level and the Influence Parameters (한강인도교 수위와 영향인자간의 다중회귀분석에 의한 홍수위 예측모형)

  • 윤강훈;신현민
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.55-69
    • /
    • 1994
  • In order to enhance the short-term flood forecasting accuracy of the water level of the In-do Brdg., three statistical flood forecasting models are presented models are presented and the forecasting accuracies and stabilities of the models are studied. The presented statistical models are as follows: The multi-input model by the multi-regression analysis between the water level of the In-do Brdg. and the influence parameters(Model MM). The two-level multi parameter model according to the water level tendency(Model 2MP). Among the three models, the Model MM showed the lowest forecasting accuracy, the model 2MP showed the highest forecasting accuracy, although this model sometimes became unstable and diverged. The model MMP forecasted the flood less accurately than model 2MP, but it gave more stable forecasting results.

  • PDF

Development of Urban Flood Water Level Forecasting Model Using Regression Method (회귀기법을 이용한 도시홍수위 예측모형의 개발)

  • Jeong, Dong-Kug;Lee, Beum-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.221-231
    • /
    • 2010
  • A regression water level forecasting model using data from stage and rainfall monitoring stations is developed to solve the difficulties which real-time forecasting models could not get the reliabilities by assuming future rainfall duration and intensity. The model could forecast future water levels of maximum 2 hours after using data from monitoring stations in Daejeon area. It shows stable forecasts by its maximum standard deviation is 5 cm, average standard deviations are 1~4 cm and most of coefficients of determination are larger than 0.95. It shows also more researches about the stationary of watershed which assumed in this regression method are necessary.

The 5-Year Ensemble Streamflow Prediction Studies in Korea (국내 앙상블 유량예측 연구 5년)

  • Kim, Young-Oh;Jeong, Dae-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.267-271
    • /
    • 2004
  • 2000년도 국내에 소개된 앙상블 유량예측은 한반도 유출특성을 고려한 예측시스템 구축을 위해 꾸준한 수정과 보완을 반복하며 약 5년간의 연구가 진행되었다. 앙상블 유량예측의 연구방향은 크게 예측의 정확성을 향상시키기 위한 이론적 인구와 수자원 계획과 관리에 활용될 수 있도록 GUI를 포함한 유량예측시스템을 구축하는 등의 실무적 연구가 함께 진행되고 있다. 앙상블 유량예측의 정확성을 향상시키기 위해 갈수기에 강우-유출모형의 모의능력을 개선해야 하며, 홍수기에는 기상예보를 효율적으로 이용해야 한다는 기본 전략을 수립하였다. 최근 강우-유출모형의 모의능력을 개선하기 위해 신경망 강우-유출모형을 구축하고, 기존 강우-유출모형의 모의결과를 보정하거나, 두개 이상의 모형을 결합함으로서 유량모의능력을 개선하여 갈수기 앙상블 유량예측 정확성을 향상시킬 수 있음을 증명하는 성과를 거둔 바 있다. 향후 앙상블 유량예측의 연구 방향은 기상예보자료의 적극적인 활용에 초점을 맞추고 있다. 최근 ENSO(El Nino Southern Occillation), PDI(Pacific Decadal Idex) 등 다양한 기후정보의 새로운 발견과 GCM 등 기후모형의 급속한 개선으로 기후 예측의 정확도가 높아지고 있는 추세이므로, 이를 이용하여 홍수기 앙상블 유량예측의 정확도 개선을 목표로 인구가 진행될 전망이다.

  • PDF

Prediction of Water Level using Deep-Learning in Jamsu Bridge (딥러닝을 이용한 잠수교 수위예측)

  • Jung, Sung Ho;Lee, Dae Eop;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.135-135
    • /
    • 2018
  • 한강의 잠수교는 평상시에는 사람과 차의 통행이 가능하나 예측수위가 5.5m일 경우, 보행자통제, 6.2m일 경우, 차량통제를 실시한다. 잠수교는 국토교통부의 홍수예보 지점은 아니지만 그 특수성으로 인해 정확한 홍수위 예측을 통해 선행시간을 확보할 필요가 있다. 일반적으로 하천 홍수위 예측을 위해서는 강우-유출 모형과 하도추적을 위한 수리모형을 결합한 모델링이 요구되나 잠수교는 하류부 조위로 인한 배수 및 상류부 팔당댐 방류량의 영향을 받아 물리적 수리 수문모형의 구축이 상당히 제약적이다. 이에 본 연구에서는 딥러닝 오픈 라이브러리인 Tensorflow 기반의 LSTM 심층신경망(Deep Neural Network) 모형을 구축하여 잠수교의 수위예측을 수행한다. LSTM 모형의 학습과 검증을 위해 2011년부터 2017년까지의 10분단위의 잠수교 수위자료, 팔당댐의 방류량과 월곶관측소의 조위자료를 수집한 후, 2011년부터 2016년까지의 자료는 신경망 학습, 2017년 자료를 이용하여 학습된 모형을 검증하였다. 민감도 분석을 통해 LSTM 모형의 최적 매개변수를 추정하고, 이를 기반으로 선행시간(lead time) 1시간, 3시간, 6시간, 9시간, 12시간, 24시간에 대한 잠수교 수위를 예측하였다. LSTM을 이용한 1~6시간 선행시간에 대한 수위예측의 경우, 모형평가 지수 NSE(Nash-Sutcliffe Efficiency)가 1시간(0.99), 3시간(0.97), 6시간(0.93)과 같이 정확도가 매우 우수한 것으로 분석되었으며, 9시간, 12시간, 24시간의 경우, 각각 0.85, 0.82, 0.74로 선행시간이 길어질수록 심층신경망의 예측능력이 저하되는 것으로 나타났다. 하천수위 또는 유량과 같은 수문시계열 분석이 목적일 경우, 종속변수에 영향을 미칠 수 있는 가용한 모든 독립변수를 데이터화하여 선행 정보를 장기적으로 기억하고, 이를 예측에 반영하는 LSTM 심층신경망 모형은 수리 수문모형 구축이 제약적인 경우, 홍수예보를 위한 활용이 가능할 것으로 판단된다.

  • PDF

Parameter Calibration of Storage Function Model and Flood Forecasting (2) Comparative Study on the Flood Forecasting Methods (저류함수모형의 매개변수 보정과 홍수예측 (2) 홍수예측방법의 비교 연구)

  • Kim, Bum Jun;Song, Jae Hyun;Kim, Hung Soo;Hong, Il Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.39-50
    • /
    • 2006
  • The flood control offices of main rivers have used a storage function model to forecast flood stage in Korea and studies of flood forecasting actively have been done even now. On this account, the storage function model, which is used in flood control office, regression models and artificial neural network model are applied into flood forecasting of study watershed in this paper. The result obtained by each method are analyzed for the comparative study. In case of storage function model, this paper uses the representative parameters of the flood control offices and the optimized parameters. Regression coefficients are obtained by regression analysis and neural network is trained by backpropagation algorithm after selecting four events between 1995 to 2001. As a result of this study, it is shown that the optimized parameters are superior to the representative parameters for flood forecasting. The results obtained by multiple, robust, stepwise regression analysis, one of the regression methods, show very good forecasts. Although the artificial neural network model shows less exact results than the regression model, it can be efficient way to produce a good forecasts.

Flood Estimation Using Neuro-Fuzzy Technique (Neuro-Fuzzy 기법을 이용한 홍수예측)

  • Ji, Jung-Won;Choi, Chang-Won;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.128-132
    • /
    • 2012
  • 물은 생물의 생존을 위해 필수적인 요소로 인류가 시작된 이래로 물을 효율적으로 이용하고 안전하게 관리하기 위한 노력은 계속되어 왔다. 최근 지구 온난화가 주요 원인으로 알려진 국지성 집중호우의 피해는 매우 심각하며, 이로 인해 치수에 대한 중요성은 날로 커지고 있다. 지금까지 사용해 왔던 홍수 예 경보 과정은 특정 지점의 유출량을 예측하기 위해서 강우-유출 모형을 운영하였다. 그러나 물리적 모형의 경우 운영에 필요한 매개변수의 결정과정이 복잡하고, 매개변수 결정을 위해 많은 자료를 필요로 한다. 또한 그 매개변수의 결정과정은 많은 불확실성을 포함하고 있어서 모형의 운영을 위한 전처리과정과 계산과정을 거치는 동안 발생한 오차가 누적되어 결과물 속에는 많은 오차가 포함되어 있다. 본 연구에서는 기존의 홍수 예 경보 시스템의 문제점과 불확실성을 최대한 감소시키고 더 우수한 유출량 예측을 위해 neuro-fuzzy 추론 기법을 이용한 모형인 ANFIS(Adaptive Neuro-Fuzzy Inference System)를 사용하여 하천수위를 예측하였다. ANFIS는 신경회로망과 퍼지이론을 결합한 기법으로 신경회로망의 구조와 학습 능력을 이용하여 제어환경에서 획득한 입 출력 정보로부터 언어변수의 membership 함수와 제어규칙을 제어 대상에 적합하도록 자동으로 조종하는 기법이다. 본 연구에서는 ANFIS를 사용하여 탄천 하류에 위치한 대곡교의 수위를 예측하였다. 분석을 위해 2007년부터 2011년까지의 탄천 유역의 관측 강우자료와 수위 자료 중 강우강도와 지속시간, 강우 형태에 따라 7개의 강우사상을 선정하였다. 학습자료 및 보정자료의 변화에 따른 예측 오차를 비교하여 모형의 적용성과 적정성을 평가하였다. 적용결과 입력자료 구성의 경우 해당 시간의 강우량 및 수위자료와 10분 전 강우자료를 이용한 모델이 가장 우수한 예측을 보였고, 학습자료의 경우 자료의 길이가 길고, 최대홍수량이 큰 경우 가장 우수한 예측 결과를 보였다. 본 연구의 적용결과 가장 우수한 모형의 경우 30분 예측 첨두수위 오차는 0.32%, RMSE는 0.05m 이고 예측시간이 길어짐에 따라 오차가 비선형적으로 증가하는 경향을 보였다.

  • PDF