• 제목/요약/키워드: 홍수수위예측

검색결과 310건 처리시간 0.035초

관측 수위자료를 이용한 하류 홍수위 예측기법 (Forecasting Technique of Downstream Water Level using the Observed Water Level)

  • 김상문;최흥식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.354-354
    • /
    • 2017
  • 홍수예경보는 발생되는 홍수의 규모와 시간을 가능한 정확하고 빠르게 예측하여 홍수에 대한 위험성을 사전에 알리고자 하는데 목적이 있다. 따라서 하천범람에 따른 피해를 최소화하기 위한 홍수예경보는 일정시간의 선행시간을 확보하는 것이 매우 중요하다. 본 연구에서는 현재 하천에서 측정되고 있는 수위 관측 자료를 이용하여 하류의 수위를 예측하였다. 수위 예측을 위해 다중회귀모형 및 신경망 모형을 한강의 제1지류인 횡성댐 상류 섬강 시험유역에 적용하였다. 다중회귀모형 및 신경망 모형의 학습에는 섬강 시험유역의 2002년부터 2010년까지의 수위 관측 자료를 이용하였으며, 학습된 모형을 이용하여 30분 이내에 발생 가능한 수위를 예측하였다. 모의 결과 신경망 수위예측모형의 결정계수는 0.967으로 나타났으며, 다중회귀수위예측 모형의 결정계수는 0.815로 나타나 신경망을 이용한 수위예측모형이 다중회귀모형보다 좀 더 나은 예측 결과를 나타내는 것을 확인할 수 있었다. 본 연구결과는 향후 중소하천에서 선행시간을 확보한 홍수 예경보 구축에 활용할 수 있을 것으로 판단된다.

  • PDF

직렬/병렬 하천수위를 이용한 하류 홍수위 예경보기법 (Downstream Flood Stage Forecasting and Warning using Serial-Parallel River Stage)

  • 추연문;권기대;지홍기
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.301-304
    • /
    • 2012
  • 홍수예경보는 강우로 인하여 발생되는 홍수의 규모와 시간을 가능한 한 정확하고 빨리 예측하여 홍수에 대비할 수 있도록 유관기관 및 지역주민에게 사전에 홍수에 관한 정보 즉 예측되는 수위와 시간을 제공함으로써 홍수로부터의 피해를 최소화하는 것이다. 이와 같은 목적을 성공적으로 완수하기 위해서는 홍수시 급변하는 하천유량에 영향을 미치는 모든 수문학적 기상학적 자료를 신속 정확하게 수집할 수 있는 관측 시스템의 구축 뿐 아니라 이들 수집된 자료를 이용하여 실시간 홍수추적을 할 수 있는 효율적인 유출량 계산모형이 조화를 이룰 때 가능하다. 이에 본 연구에서는 중 소하천에서 홍수예경보를 위한 지능형 U-River 시스템의 실시간 모니터링 기술을 조사하고 하천수위를 이용한 예측시스템에 대해 연구하였다. 기존의 홍수예경보의 문제점을 해결하기 위해 간단한 입력자료만으로 홍수예측이 가능한 인공지능 기반의 신경망 모형을 이용 하였으며, 예측 모형의 효율성과 적용성을 높이기 위해 유사한 수문 사상을 가지는 상 하류간 입력 자료를 동시에 사용하였다. 또한 하천수위를 이용한 모델의 수행은 각 지점별 훈련성과를 토대로 최적의 은닉층 노드수를 선발하여 실시간 수위예측에 활용하였으며 수치적 기준을 적용하여 실측 수위와 모형에 의해 예측된 수위를 이용하여 평가하였다.

  • PDF

도시하천의 실시간 홍수예측서비스 개발 (A Development of Realtime Urban Flood Forecasting Service)

  • 김형우;이종국;하상민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.532-536
    • /
    • 2007
  • 급속한 도시화 및 지구온난화로 인한 집중호우로 홍수피해가 해마다 증가하고 있다. 홍수피해를 최소화하기 위하여 4대강 중심의 홍수예경보시스템이 구축되는 등 다양한 제도적 장치가 마련되고 있으나 중소하천이 분포되어 있는 도시유역에서의 홍수예측기능은 부족한 실정이다. 본 연구에서는 중소 도시하천에 적용 가능한 실시간 도시홍수예측서비스 시스템(Realtime Urban Flood Forecasting Service, U-FFS)을 개발하였다. 경기도 성남에 위치한 탄천을 대상유역으로 선정하고 실시간 강우 및 수위관측소를 설치하여 수문데이타를 수집하였으며 이를 바탕으로 수위예측모형을 구축하였다. 모형구축에는 이미 국내외 학계에서 그 정확도가 입증된 바 있는 Data-driven 모델의 일종인 ANFIS(Adaptive Neuro-Fuzzy Inference System)를 이용하였다. 개발된 수위예측모형은 지정된 시간에 자동으로 작동 가능한 실행파일로 프로그래밍되어 최종적으로 홍수예측 웹서비스와 연동된다. U-FFS는 집중호우 발생 시 최종 유출구의 30분, 1시간, 2시간 후의 수위 예측값을 웹 상을 통해 제공함으로써 언제 어디서나 홍수예측 정보를 누구나 손쉽게 획득할 수 있는 장점이 있다. 시범운영 결과, 30분 및 1시간 후의 수위 예측은 정확도가 매우 뛰어났으며 2시간 후의 수위 예측의 정확성은 다소 떨어지는 것으로 확인되었으나 전반적인 홍수예측 판단에는 무리가 없을 것으로 예상된다. 본 시스템의 홍수예측모형은 생성 및 수정이 간편하여 그 활용성이 매우 높을 것으로 기대된다. 특히 안전함을 지향하는 각종 U-City나 홍수피해가 빈번한 도시유역에 적용하면 기존 시스템과 차별화된 실시간 홍수예측 서비스가 가능해져 홍수피해를 최소화할 수 있을 것이다. 취수구 직경 D의 3.3배를 벗어나지 않는다는 결과를 도출할 수 있었다.링 목적으로 사용될 수 있다. 본 연구에서 개발한 영상수위계는 한강홍수통제소 관할의 전류, 청담대교 등 4개소 낙동강 홍수통제소 2개소, 지자체 등에 적용되었으며, 적용 결과 비교적 안정적이면서 정확하게 수위를 측정하는 것으로 나타났다. 한편 기존 CCD 카메라 이외에 CCTV를 이용한 영상수위계를 개발하여 영상의 화질 개선뿐 아니라 하천화상 감시 기능을 강화하였다.소류의 섭취율은 높았다. 집단간의 상관도를 보면 교육별로 김치, 장아찌, 콩이 각각 p>0.5 수준에서 유의한 차가 없었고, 나머지는 유의한 차가 있었다. 연령별로는 멸치가 유의한 차가 없었고(p>0.5), 수입별로는 콩이 유의한 차가 없었다(p>0.5). 4. 영양지식(營養知識) 검토 가정생활(家庭生活)에 필요(必要)한 일반적(一般的)인 영양지식(營養知識)은 대체적으로 낮은 편이었다. 어린이 영양, 편식의 해로움, 비만증의 해로움, 임신부 그리고 수유부 영양에 대하여는 일반적으로 알고 있다고 하였으며, 그다음으로 이유기 영양, 어린이 발육에 필요한 식품, 식품과 영양소와의 관계, 우유의 성분, 노인영양에 대하여 잘 알고 있는 비율이 낮았으며, 인체의 영양소, 식단작성여부, 간식의 이론, 식품감별법에 대하여는 가장 낮은 비율을 나타냈다. 각 영양지식은 교육정도가 높을수록 영양지식이 높았고, 교육별 집단간의 유의한 차가 나타났다. (0.001

  • PDF

감조하천의 Bayesian Network를 활용한 홍수 예·경보 기법 개발 (Development of Flood Forecasting and Warning Technique in a Tidal River Using Bayesian Network)

  • 이명진;송재현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.422-422
    • /
    • 2022
  • 최근 기후변화와 도시화 등의 영향으로 인해 전 지구적으로 홍수 피해의 규모와 홍수발생 빈도가 증가하고 있다. 특히, 전 세계 인구의 약 50% 이상이 거주하고 있는 연안지역의 홍수피해 위험성은 급격히 증가하고 있는 추세이며, 각 국가는 홍수 피해를 저감하고 예방하기 위한 노력을 지속적으로 기울이고 있다. 본 연구에서는 연안지역의 감조하천을 대상으로 홍수 예경보 의사결정기법을 개발하고자 하였다. 이를 위해 감조하천에서 관측된 수위는 조석에 의한 수위(조석 성분), 파고에 의한 수위(파고 성분), 강우에 의한 수위(강우-유출 성분), 그리고 잡음에 의한 수위(잡음 성분)의 4가지 수문 성분으로 구성되어 있다고 정의하였고, 감조하천의 예측 강우 성분에 해당하는 예측 수위를 추정하기 위해 수위-유량 관계 곡선식을 개발하고자 하였다. 또한 각 수문 성분별 위기 경보 단계를 설정하고, Bayesian Network를 활용하여 수문 성분들의 위험을 종합적으로 고려할 수 있는 홍수 예·경보 의사결정 기법을 개발하였다. 3가지 난수 발생 방법에 따라 Bayesian Network 모형을 통해 다양한 수문 조건에 따른 조건부 확률을 산정하였으며, 정확도 검토를 수행한 결과 F-1 Socre가 25.1%, 63.5% 및 82.3%의 정확도를 보였다. 향후 본 연구에서 제시한 방법론을 활용한다면 기상청에서 제공하고 있는 예측 강우 및 GRM 모형을 통해 유출량을 산정하고, 이를 예측 수위로 변환하여 연안 지역의 홍수 위험도 매트릭스를 통해 홍수 예·경보에 대한 의사결정을 수행할 수 있을 것으로 판단된다.

  • PDF

하천수위 예측을 위한 인공신경망 학습에 관한 연구 (Training of Artificial Neural Network for water level forecasting)

  • 정지원;리안
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.563-563
    • /
    • 2016
  • 국내 강우발생은 기상학적인 영향으로 인하여 장마기간(6~8월)에 집중되어있으며, 최근에는 기후변화의 영향으로 짧은 시간에 많은 양의 강우가 발생하는 집중호우의 발생빈도가 증가하고 있다. 또한, 시간과 지역에 관계없이 국지성호우의 발생빈도 역시 높아지고 있다. 집중호우와 국지성호우는 짧은 시간에 하천수위를 상승시키므로 홍수로 인한 물적 피해가 크게 발생된다. 국토교통부에서는 그동안 홍수예보에 필수적인 우량, 하천수위 등 기초자료를 확보하기 위해 관측소(500여개) 및 홍수량 측정지점(80여개)을 확대하였으며, 관측된 자료는 모두 전산망에 기록, 보관하고 있다. 또한 한강, 금강, 낙동강, 영산강의 경우 홍수통제소에서 홍수량 예측 계산 등을 통해 홍수 예경보를 실시하고 있다. 하지만 4대강을 제외한 중소하천의 홍수예경보에 대한 정보를 찾아볼 수 없으며, 현재 연구가 진행중이다. 강우-유출모형을 활용하여 중소하천의 강우와 유출의 관계를 해석하는 과정은 다양한 인자를 고려해야하지만 중소하천의 경우 하천단면 등 하천자료가 충분히 구축되어 있지 못하므로 유출량 계산에 많은 어려움을 겪고 있다. 이에 본 연구에서는 중소하천의 홍수위 예측을 위해 한강의 과거 수위와 현재 수위만을 활용하여 인공신경망(Artificial Neural Network, ANN)의 학습을 진행하였다. 첫 번째로 ANN을 활용하여 한강유역 중 홍수예보지점(잠수교)의 수위변화에 직접적으로 연관이 있는 5개 수위관측소를 선정하였으며, 과거 장마기간(6~8월)관측 자료를 활용하였다. 두 번째로 홍수예보지점(잠수교)과 5개 수위관측소의 과거 관측수위(2009~2014년)를 인공신경망의 학습자료로 활용하여 모델을 훈련시켰으며, 마지막으로 2015년의 관측수위를 이용하여 ANN의 학습정확도에 대한 검증을 하였다. 본 과정은 수위예측을 위한 ANN의 훈련단계로 Training/Test를 반복하였으며, 학습결과와 2015년 관측수위 비교시 $R^2=0.987$과 상관계수 r=0.994로 유사한 패턴을 보였으나 최대치와 최소치에 대한 오차가 있음을 확인하였다.

  • PDF

하천 이력현상 활용 하천 홍수예측 기법 개발 (Development of river flood prediction method utilizing water stage-discharge hysteresis)

  • 김경동;김동수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.19-19
    • /
    • 2022
  • 하천에 발생하는 홍수를 예측하는 과정은 실무에서 많이 사용하는 HEC-HMS 와 같은 강우-유출 모형을 사용하여 산정한 하천의 강우빈도별 설계홍수량으로부터 HEC-RAS와 같은 수리학적 모형을 이용하여 홍수위를 산정하는 방법을 주로 의존하고 있다. 하지만 이러한 방법은 강우 강도를 통하여 하천에 발생하는 빈도별 유량으로 간접적으로 홍수위를 산정하기 때문에 실시간으로 발생하는 홍수위 또는 홍수 발생시간을 정확하게 알기 힘들다. 하지만, 최근 하천의 홍수파 또는 배수영향으로 인한 이력현상으로 하천의 수위-유량관계의 이력현상으로 인해 발생하는 유량자료의 오차를 줄이기 위해 수위관측소에 H-ADCP 초음파 센서를 활용한 자동유량측정장치를 설치, 운영하여 실시간으로 유량자료를 관측하고 있다. 이러한 자동유량측정장치에서 측정하는 유량자료는 H-ADCP에서 지표유속으로부터 유량자료를 산정하는데, 홍수파 또는 배수영향으로 지표유속, 유량, 수위의 수문곡선에 발생하는 이력현상을 관측 가능하다. 관측된 수문곡선의 이력현상은 유속, 유량, 수위 순으로 첨두의 발생시간이 나타나는데, 유속의 첨두 발생시간과 수위의 첨두 발생시간은 수문곡선의 형태 또는 규모에 따라 달라진다. 따라서 본 연구에서는 기존의 강우-유출 모의에 의존한 홍수예보기법을 보완하여 더 정확한 홍수위, 홍수 발생시간을 예측하고, 홍수예경보 시스템에 정량적인 기준을 제시할 수 있도록, 하천에 발생하는 수문곡선의 첨두유속과, 첨두수위의 발생시간, 규모를 분석하여 둘의 관계를 제시하고자 한다. 분석방법으로는 대상유역으로 이력현상이 발생하는 영산강유역에 위치한 남평교, 나주대교 두 지점을 선정하고 자동유량관측소 관측자료인 지표유속, 수위자료를 취득한다. 취득한 자료로부터 지표유속의 첨두 값과, 수위의 첨두 값, 지표유속의 첨두지점으로부터 수위의첨두지점 까지 발생하는 시간을 홍수 사상별로 정리하여 첨두유속-첨두수위, 첨두유속-첨두수위발생시간의 관계그래프를 산정하였다. 남평교의 경우 유속-수위의 이력범위는 거의 없었다. 나주대교의 경우 유속-수위 이력범위가 현저히 나타나 관계를 분석하기 용이 하였다. 하천에 이력현상이 현저히 나타나는 경우 첨두유속-첨두수위, 첨두유속-첨두수위발생시간의 관계가 뚜렷하게 나타나고 이러한 결과를 바탕으로 하천의 홍수예경보 판단의 정량적 기준을 제안하였다.

  • PDF

데이터 기반 홍수 도달시간 및 수위예측 시뮬레이터 개발 (Development of Data Driven Flood Arrival Time and Water Level Estimation Simulator)

  • 이호현;이동훈;홍성택;김성훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.104-104
    • /
    • 2022
  • 임진강 수계는 북측 지역이 다수를 차지하는 유역 특성으로 예고 없는 상류 급방류, 강우 등으로 인해 댐 운영에 근본적 어려움이 있으며, 이에 따라 홍수조절지 및 댐 하류 계측 가능 지역의 취득 자료를 고려한 하천 수위 변화에 대한 사전 예측을 필요로 하고 있다. 홍수기 하천 도달시간 및 수위예측 기법으로는 물리 기반 및 데이터 기반 모델들이 다양하게 연구되어 왔으며, 일부 연구성과들은 현업에 활용하고 있다. 물리기반 모델은 하천 지형 변화에 대한 자료 취득 및 분석에 많은 시간을 요하는 단점은 있으나, 설명 가능한 모델을 구현할 수 있을 것으로 사료 된다. 반면, 데이터 기반 인공지능 모델은 짧은 시간 및 비용으로 모델을 개발할 수 있으나, 복잡한 알고리즘구현 시 설명이 불가하여 일관성을 의심 받을 수 있다. 본 논문에서는 홍수 도달시간과 하류 수위 상승에 대하여 설명 가능한 인공지능 알고리즘 및 시뮬레이션 프로그램을 개발하고자 하였다. 홍수 도달시간 예측은 기존 조견표 방식에서 고려하지 않았던 홍수파의 영향을 추가 변수화 하고, 데이터의 전후처리를 통하여 도달시간을 예측하였다. 실시간 하류 수위 예측은 댐 방류량, 주변 강우, 조위 등을 고려하여 도달시간 후 수위를 예측할 수 있도록 구현하였으며, 자료 동화 기술을 일부 적용하였다. 미래 방류조건에 대한 시뮬레이션을 위해서는 미래 방류량, 예상 강우 입력 시 하천 지점별 수위 상승을 예측할 수 있도록 알고리즘 및 프로그램을 개발하였다. 이를 구현하기 위하여 다양한 인공지능 알고리즘을 이용한 학습, 유전자 알고리즘을 이용한 가중치 학습 제한 조건내 최적화, 수위파와 조위파의 중첩의 정리 등을 이용하여 예측 정확도 및 신뢰성을 제고 하였다. 인공지능 분석결과의 현업활용성 제고를 위하여 시뮬레이터 프로그램을 개발하여 현업에 적용하였다.

  • PDF

HPG를 이용한 낙동강 하류구간 홍수위 예측 정확도 개선 (Improvement of flood-stage forecast using the HPG in the lower Nakdong River)

  • 김지성;김원;최규현;김극수;김태형
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.242-242
    • /
    • 2016
  • 낙동강 하류구간인 남강합류점에서 낙동강하구둑까지는 하상경사가 약 1/10,000보다 작은 매우 완만한 경사를 이루고 있으므로 홍수기 고수위를 장시간 유지하는 등 홍수소통에 불리한 조건을 가지고 있다. 이처럼 하상경사가 매우 완만한 하천에서는 홍수파의 전파 특성이 하상경사, 수심경사, 그리고 이송가속도와 국부가속도 경사 등 운동량 방정식의 각 항 모두에 영향을 크게 받는 것으로 알려져 있다. 따라서, 낙동강 하류구간의 홍수분석 정확도 개선을 위해서는 대상구간에 유입하는 홍수수문량의 크기 및 변화를 정확히 반영하는 것이 무엇보다 중요하다. 하천 본류로 유입하는 지류의 홍수량을 산정하는 보편적인 방법은 지류 하류의 수위관측소에서 구축된 수위-유량관계곡선을 이용하는 것이다. 그러나 본류 수위의 배수영향을 받는 지류 하류 구간에서는 단일 수위-유량관계의 결정이 불가능하므로 지류 유출량 산정을 위한 새로운 방법이 필요하다. 본 연구에서는 낙동강 하류구간(창녕 함안보~낙동강하구둑) 유역면적의 약 45% 이상을 차지하는 밀양강 유역의 홍수기 유출량 산정을 위하여 HPG(Hydraulic Performance Graph)를 이용하였다. HPG는 배수영향을 받아 시시각각 수리특성이 변화하는 구간에서도 유량 및 상하류 수위 등 수리특성 추정에 합리적인 결과를 제공하는 것으로 알려져 있다. 2012년 태풍 산바 사상을 대상으로 HPG를 이용하여 산정한 밀양강 홍수량과 기존 수위-유량관계로 산정한 홍수량을 각각 경계조건으로 사용한 경우로 구분하여, 낙동강 하류구간 주요 지점인 삼랑진과 구포의 홍수위 예측 정확도를 비교하였다. 비교결과, 기존 방법과 HPG를 이용한 방법 모두 예측시점이 첨두발생 시각에 가까워질수록 평균오차가 감소하는 것으로 분석되었다. 그러나 기존 방법은 예측시점에 따라 평균오차의 변화가 단조롭지 않고 진동이 발생한 반면, HPG를 이용한 방법은 기존 방법보다 오차의 감소가 단조롭고 지속적인 것으로 나타났으며 평균오차 또한 작았다. 본 연구결과, 배수영향을 받는 지류 하류구간에서 HPG를 이용한 유입량 산정은 본류 홍수위 예측 정확도 개선을 위한 경제적인 대안이 될 것으로 판단된다.

  • PDF

홍수위 예측을 위한 수문자료와 LSTM 기법 적용 (Application of LSTM and Hydrological Data for Flood Level Prediction)

  • 김현일;최희훈;김태형;최규현;조효섭
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.333-333
    • /
    • 2021
  • 최근 전 지구적인 기후변화 및 온난화의 영향으로 태풍 및 집중호우가 빈번하게 일어나고 있으며, 이로 인한 한천범람 등 홍수재해로 인명 및 재산 피해가 크게 증가하고 있다. 우리나라에서도 태풍 및 집중호우로 인한 호수피해는 매년 발생하고 있으며, 피해 빈도와 강도가 증가하고 있는 실정이다. 이러한 현실을 고려하였을 때에 하천 인근 주민의 생명과 재산을 보호하기 위하여 실시간으로 홍수위 예측을 수행하는 것은 매우 중요하다 할 수 있다. 국내에서 수위예측을 위하여 대표적으로 저류함수모형(Storage Function Model, SFM)을 채택하고 있지만, 유역면적이 작아 홍수 도달시간이 짧은 중소하천에서는 충분한 선행시간과 정확도를 확보하기 어려운 문제점이 있다. 이는 유역면적이 작은 중소하천에서는 유역 및 기상 특성과 관련된 여러 인자 사이의 비선형성이 대하천 유역에 비해 커지는 문제점이 있기 때문이다. 본 연구에서는 위와같은 문제를 해결할 수 있도록, 수문자료와 딥러닝 기법을 적용하여 실시간으로 홍수위를 예측할 수 있는 방법론을 제시하였다. 지난 태풍 및 집중호우로 인하여 급격한 수위상승이 있던 낙동강 지류하천에 대하여 LSTM(Long-Short Term Memory) 모형 기반 실시간 수위예측 모형을 개발하였으며, 선행시간 30~180분 별로 홍수위를 예측하고 관측 수위와 비교함으로써 모형의 적용성을 검증하였다. 선행시간 180분 기준으로 영강 유역 수위예측 결과와 실제 관측치의 평균제곱근 오차는 0.29m, 상관계수는 0.92로 나타났으며, 밀양강 유역의 경우 각각 0.30m, 0.94로 나타났다. 본 연구에서 제시된 딥러닝 기반모형에 10분 단위 실시간 수문자료가 입력된다면, 다음 관측자료가 입력되기 전 홍수예측 결과가 산출되므로 실질적인 홍수예경보체계에 유용하게 사용될 수 있을 것이라 보인다. 모형에 적용할 수 있는 더욱 다양한 수문자료와 매개변수 조정을 통하여 예측결과에 대한 신뢰성을 더욱 높일 수 있다면, 기존의 저류함수모형과 연계하여 홍수대응 능력을 향상시키는데 도움이 될 수 있다.

  • PDF

수위예측 (Water Level Prediction)

  • 오상훈
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2019년도 춘계종합학술대회
    • /
    • pp.3-4
    • /
    • 2019
  • 강의 수위 예측은 강 유역의 홍수 발생에 대한 방재 차원에서 아주 중요하다. 이 논문에서는 낙동강을 대상으로 수위를 예측하는 신경회로망 모델을 기반으로 홍수위에 도달하는 입력 조건을 학습에 의해 찾아내는 방법을 제시한다.

  • PDF