• Title/Summary/Keyword: 홍성-양평-오대산 충돌대

Search Result 2, Processing Time 0.023 seconds

The tectonic evolution of South Korea and Northeast Asia from Paleoproterozoic to Triassic (원생대 이후 트라이아스기까지의 남한과 동북아시아의 지구조 진화)

  • Oh, Chang-Whan
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.59-87
    • /
    • 2012
  • Recent studies reveal that eclogite formed in the Hongseong area and post collision igneous rocks occurred throughout the Gyeonggi Massif during the Triassic Songrim Orogeny. These new findings derive the tectonic model in which the Triassic Qinling-Dabie-Sulu collision belt between the North and South China blocks extends into the Hongseong-Yangpyeong-Odesan collision belt in Korea. The belt may be further extended into the late Paleozoic subduction complex in the Yanji belt in North Korea through the Paleozoic subduction complex in the inner part of SW Japan. The collision belt divides the Gyeonggi Massif into two parts; the northern and southern parts can be correlated to the North and South China blocks, respectively. The collision had started from Korea at ca. 250 Ma and propagated to China. The collision completed during late Triassic. The metamorphic conditions systematically change along the collision belt:. ultrahigh temperature metamorphism occurred in the Odesan area at 245-230Ma, high-pressure metamorphism in the Hongseong area at 230 Ma and ultra high-pressure metamorphism in the Dabie and Sulu belts. This systematic change may be due to the increase in the depth of slab break-off towards west, which might be related to the increase of the amounts of subducted ocecnic slab towards west. The wide distribution of Permo-Triassic arc-related granitoids in the Yeongnam Massif and in the southern part of the South China block indicate the Permo-Triassic subduction along the southern boundary of the South China block which may be caused by the Permo-Triassic collision between the North and South China blocks. These studies suggest that the Songrim orogeny constructed the Korean Peninsula by continent collision and caused the subduction along the southern margin of the Yeongnam Massif. Both the northern and southern Gyeonggi Massifs had undergone 1870-1840 Ma igneous and metamorphic activities due to continent collision and subduction related to the amalgamation of Colombia Supercontinent. The Okcheon metamorphic belt can be correlated to the Nanhua rift formed at 760 Ma within the South China blocks. In that case, the southern Gyeonggi Massif and Yeongnam Massif can be correlated to the Yangtz and Cathaysia blocks in the South China block, respectively. Recently possible Devonian or late Paleozoic sediments are recognized within the Gyeonggi Massif by finding of Silurian and Devonian detrital zircons. Together with the Devonian metamorphism in the Hongseong and Kwangcheon areas, the possible middle Paleozoic sediments indicate an active tectonic activity within the Gyeonggi Massif during middle Paleozoic before the Permo-Triassic collision.

The Characteristic of Mangerite and Gabbro in the Odaesan Area and its Meaning to the Triassic Tectonics of Korean Peninsula (오대산 지역에 나타나는 맨거라이트와 반려암의 특징과 트라이아스기 한반도 지체구조 해석에 대한 의미)

  • Kim, Tae-Sung;Oh, Chang-Whan;Kim, Jeong-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.77-98
    • /
    • 2011
  • The igneous complex consisting of mangerite and gabbro in the Odaesan area, the eastem part of the Gyeonggi Massif, South Korea, intruded early Paleo-proterozoic migmatitic gneiss. The mangerite is composed of orthopyroxene, clinopyroxene, amphibole, biotite, plagioclase, pethitic K-feldspar, quartz. The gabbro has similar mineral assemblage but gabbro has minor amounts of amphibole and no perthitic K-feldspar. The gabbro occurs as enclave and irregular shaped body within the mangerite, and the boundary between the mangerite and gabbro is irregular. Leucocratic lenses with perthitic K-feldspar are included in the gabbro enclaves. These textures represent mixing of two different magmas in liquid state. SHRIMP U-Pb zircon age dating gave $234{\pm}1.2$ Ma and $231{\pm}1.3$ Ma for mangerite and gabbro, respectively. These ages are similar with the intrusion ages of post collision granitoids in the Hongseong (226~233 Ma) and Yangpyeong (227~231 Ma) areas in the Gyeonggi Massif. The mangerite and gabbro are high Ba-Sr granites, shoshonitic and formed in post collision tectonic setting. These rocks also show the characters of subduction-related igneous rock such as enrichment in LREE, LILE and negative Nb-Ta-P-Ti anomalies. These data represent that the mangerite and gabbro formed in the post collision tectonic setting by the partial melting of an enriched lithospheric mantle during subduction which occurred before collision. The heat for the partial melting was supplied by asthenospheric upwelling through the gab between continental and oceanic slabs formed by slab break-off after continental collision. The distribution of post-collisional igneous rocks (ca. 230 Ma) in the Gyeonggi Massif including Odaesan mangerite and gabbro strongly suggests that the tectonic boundary between the North and South China blocks in Korean peninsula passes the Hongseong area and futher exteneds into the area between the Yangpyeong-Odaesan line and Ogcheon metamorphic belt.