• Title/Summary/Keyword: 홀로세 해수면 상승

Search Result 17, Processing Time 0.031 seconds

Holocene Sea Level Changes in the Eastern Yellow Sea: A Brief Review using Proxy Records and Measurement Data (황해 동부 연안의 홀로세 해수면 변화: 대리기록과 관측자료를 통한 재검토)

  • Lee, Eunil;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.520-532
    • /
    • 2015
  • In order to understand the Holocene sea level changes in the eastern Yellow Sea, the west coast of Korea, and to compare the rates of sea level rise in each period of time, the geological proxy records for pre-instrumental era and measurement data for the present day were combined and analysed. The sea level in the Yellow Sea rose fast with a rate of about 10 mm/yr during the early Holocene, and decelerated down to 1 mm/yr since the mid to late Holocene. The rising rates of sea level in the 20th century were slightly higher than those in the late Holocene. The present-day rates of sea level rise, known as the 'rapid' rise, are in fact much lower or similar, compared to the early to mid Holocene sea levels in the study area. Recent tide-gauge data show that sea level rise in the eastern Yellow Sea has been accelerating toward the 21st century. These rising trends coincide well with global rising patterns in sea level. Additionally, the present-day rising trends of sea level in this study are correlated with increased rates of carbon dioxide concentrations and sea surface temperatures, further indicating a signal to global warming associated with the human effect. Thus, the sea level changes induced by current global warming observed in the eastern Yellow Sea and world's oceans can be considered as 'Anthropocene' sea level changes. The changes in sea level are based on instrumental measurements such as tide-gauges and satellite altimetry, meaning the instrumental era. The Holocene changes in sea level can thus be reconstructed from geological proxy records, whereas the Anthropocene sea-level changes can be solely based on instrumental measurements.

Seismic Stratigraphy and Depositional History of Holocene Transgressive Deposits in the Southeastern Continental Shelf, Korea (한국 남동해역 홀로세 해침퇴적층의 탄성파층서 및 퇴적역사)

  • Yoo, Dong-Geun;Kim, Seong-Pil;Lee, Chi-Won;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.44 no.4
    • /
    • pp.303-312
    • /
    • 2011
  • Analysis of high-resolution seismic profiles from the southeastern continental shelf of Korea reveals that the Holocene transgressive deposits consist of five sedimentary units characterized by retrograding or backstepping depositional arrangements. Unit I, forming a linear sediment body along the shelf margin, is an ancient beach/shoreface deposit formed during the early stage of transgression. During the transgression, the paleo-channels were backfilled with fluvial or coastal-plain sediments, forming Unit II as an incised-channel fill deposit. The near-surface sediment was reworked and eroded by shoreface erosion, forming a thin lag of sands (Unit III) on the midshelf. During the middle stage of the transgression, the shoreline may have stabilized at around 70 - 80 m below the present sea level for some period of time to allow the formation of sand ridge systems (Unit IV). Unit V in the inner shelf was deposited in an estuarine environment during the middle to late stage of transgression. Such transgressive stratigraphic architecture is controlled by a function of lateral changes in the balance among rates of relative sea-level rise, sediment input and marine processes at any given time.

Vertical Variations of Benthic Foraminiferal Assemblages in Core Sediments on Yeoja Bay, Southern Coast of Korea: Implications for Late Holocene Sea-Level Change (여자만 코어 퇴적물에서 나타나는 저서성 유공충 군집 변화: 홀로세 후기 해수면 변화 의의)

  • Jang, Seok-Hoon;Jeong, Da-Un;Lee, Yeon-Gyu
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.409-426
    • /
    • 2009
  • In the four sedimentary cores from Yeoja Bay, the analyses of grain size, benthic foraminiferal species compositions, assemblages and statistics were carried out to investigate the effects of late Holocene sea-level change on benthic foraminifera. The core sediments were mainly composed of fine-grained silt and clay. The benthic foraminifera were classified into 27 species of 16 genera, 30 species of 21 genera, 50 species of 29 genera and 52 species of 29 genera in Core YC-1 to 4, respectively. In the result of cluster analysis, it seemed that Group 1 (Core YC-1 and 2) of representative A. beccarii assemblages was deposited in upper bay environment and Group 2 (Core YC-3 and 4) of representative E. clavatum-A. beccarii assemblages was deposited in inner bay environment affected by offshore water. In the result of species composition analysis, the production frequency of A. beccarii was gradually decreased from low layer to upper layer, whereas production frequency of E. clavatum and P.F./T.F. was gradually increased to upward. These change patterns appeared in benthic and planktonic foraminifera seemed to reflect the late Holocene sea-level rise in Yeoja Bay.

Holocene sea-level rise and paleoenvironmental changes in Korea Strait shelf (대한해협 대륙붕 해역의 홀로세 해수면 상승과 고환경변화)

  • 남승일;장정해;공기수;김성필;유동근
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.1
    • /
    • pp.7-16
    • /
    • 2003
  • A 31m-long sediment core (SSDP-102) was taken from the inner shelf (about 40m water-depth) off the northwestern coast of the Korea Strait. Detailed lithofacies and organic-geochemical analyses were performed to establish a high-resolution stratigraphy in the Korea Strait shelf and to reconstruct the paleoenvironmental changes associated with the Holocene marine transgression. The stratigraphic framework of the core was primarily established using 6 AMS $^{14}C$ ages. The sedimentary record of the core SSDP-102 allows for the reconstruction of the paleoenvironmental changes during the last 12.1 ka BP. According to the high-resolution seismic reflection profiles, lithofacies and organic-geochemical data, the core SSDP-102 can be divided into three units (III to I in ascending order) above the acoustic basement. The three units reflect distinct changes of depositional environments resulted from the post-glacial marine transgression. Therefore, it is suggested that three phases of sea-level change have occurred within the inner shelf of the Korea Strait following the Holocene marine transgression. (1) estuarine environments from ca. 12.1 to 6.2 ka BP; (2) near-shore environments with a period of decreased rising of sea level between 6.2 and 5.1 ka BP; (3) near-shore to modem marine environments after 5.1 ka BP. In particular, the present marine conditions influenced by the warm Tsushima Current have been gradually established after ca. 5.1 ka BP.

  • PDF

Holocene Sea Level Reflected from Marine Terrace in Geoje Island and its Influences on Coastal Morphogenesis (거제도 동부해안에서 파악되는 홀로세 고해수준면과 지형발달과정)

  • YANG, Jae-Hyuk
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 2011
  • Coastal terrace was developed at 7.2m height near Shinchon village in Geoje Island. It is located on the east side of southern coast in Korean Peninsula, where sea-level changes caused by ebb and flow of the tide, embayment are relatively low. Due to the breccia layer by mass-movement, dark grayish clayey formation, marine origin's rounded gravel are deposited sequentially in a cross-section of coastal terrace, so it provides a good example which understand Holocene sea level changes to determine the effect on the various sedimentary environments. For the purpose of identifying the morphogenetic process, Grain size, Roundness, XRD, AMS dating analysis was attempted. As a result, after last glacial age, Holocene sea level rise to +5.6m(4,740±100yrs BP). At that time, various geomorphological features are considered to be formed.

The Relationship between Climate Change and Magnetic Susceptibility of Estuarine Sediments (하구역 퇴적물의 대자율 변화와 기후변화의 연관성)

  • Shin, Young-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.5
    • /
    • pp.521-535
    • /
    • 2011
  • This study intended to explain the relationship between climate change and magnetic susceptibility of estuarine sediment. Data of OSL dating and magnetic susceptibility from estuarine tidal sediment were compared with various climate change data. During the last Holocene, the intense of magnetic susceptibility related with weaker Siberian High and stronger Asian Summer Monsoon. It is explained that high precipitation and runoff made much fluvial sediment input to the estuary. From the early to mid Holocene, there is no clear relationship between climate change and MS because of the much coastal sediment input caused by rapid sea level rise and the formation of upland soil and coastal marsh. These results contribute to reconstruct paleo-environmental changes of west coast of Korea, in the way of using benefit of ubiquitous estuarine tidal flats and relatively useful magnetic susceptibility methodoloy.

  • PDF

Holocene Climate Optimum and environmental changes in the Paju and the Cheollipo areas of Korea (한반도 홀로세 온난기후 최적기 (Holocene Climate Optimum)와 지표환경 변화)

  • Nahm, Wook-Hyun;Lim, Jae-Soo
    • The Korean Journal of Quaternary Research
    • /
    • v.25 no.1
    • /
    • pp.15-30
    • /
    • 2011
  • Three sediment cores from two different locations (UJ-03 and UJ-12 cores of valley sediment in Paju area, and CL-4 core of wetland sediment in Cheollipo area) along the western Korean Peninsula yield crucial information on the timing and spatial pattern of century-scale climate changes and subsequent surficial responses during the Holocene. In Paju area, the sediments included abundant coarse-grained sediment (coarse sands and pebbles) from 7100 to 5000 cal. yrBP, total organic carbon (TOC) values showed a marked increase from 5000 to 2200 cal. yrBP, several intermittent depositional layers were observed from 2200 cal. yrBP. In Cheollipo area, lake environment developed from 7360 to 5000 cal. yrBP, the deposition of organic materials increased from 5000 to 2600 cal. yrBP, peatland formed from 2600 cal. yrBP. The two patterns of surficial responses to the climate changes through the Holocene are different to each other. This might be due to the dissimilarity in geomorphic conditions. However, the approximate simultaneity of environmental changes in two areas shows that they both can be correlated to the major climate changes. Two areas which have undergone significant changes indicated that the hydrological factors including precipitation and strength of water flow were most responsible for the landscape and geomorphic evolutions. Although the upwards trend in relative sea-level also played a primary role for environmental changes in coastal area (Cheollipo area), detailed studies have still to be undertaken.

  • PDF

High-Resolution of Paleoenvironmental Reconstruction and Sea-Level History in Delaware Bay, the East Coast of U.S.A. (미국동부 델라웨어만의 고정밀도 해수면 역사와 고환경 복원)

  • YI, HI-IL;WEHMILLER, JOHN F.
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.320-331
    • /
    • 1995
  • The closely spaced cores were analyzed to find detailed reconstruction of paleoenvironments and sealable changes along the Delaware Bay coast. Three areas, Kitts Hummock Beach mars, the St. Jones River marsh, and Bowers marsh near the St. Jones River's mouth, were chosen because these areas are compose of their own geomorphic characteristics and sea-level history. since significance of the stratigraphic correlations was to determine sedimentary fancies and paleoenvironments, multidisciplinary methods such as lithological description, grain-size analysis, organic/inorganic content, water content, mineral composition, botanical analysis, micropaleontological analysis, and /SUP 14/C datings were performed. Five major divisions of marsh environments were recognized in the stratigraphic sections: freshwater marsh, initialfreshwater marsh, slightly brackish marsh, brackish marsh, and salt marsh. Most of the lower part in the stratigraphic sections show freshwater marsh. On the top of this, either brackish marsh or tidal flat/tidal stream was recorded. The pro-Holocene sediments consist of sand, mud, and sandy mud, The pre-Holocene configuration played an important role for developing the Holocene Paleoenvironmental changes. The irregular configuration of the pre-Holocene sediments consist of sand, mud, and sandy mud. The pre-Holocene configuration played an important role for developing the Holocene Paleoenvironmental changes. The irregular configuration of the pre-Holocene surface within short distances permitted the concurrent development of variable environments such as freshwater marsh, brackish marsh or salt marsh at similar elevations. The freshwater marsh in this case was formed in the areas of isolation, so saline-water cannot encroach upon these areas. This complex development of paleoenvironments leads to a difficulty in stratigraphic correlation and interpretation of local relative sea-level changes. The deposition of subsurface sediments was affected by sediment supply, compaction, fluvial activity, biological competition, local tectonics and isostacy, climate and local relative sea-level changes. It was interpreted that the positions in the changes from freshwater environments to brackish environments or ice versa are the turning points of transgressions and regressions. Therefore, multiple transgressions and regressions were identified in the stratigraphic sections of the study area.

  • PDF

Late Quaternary Sedimentation in the Yellow Sea off Baegryeong Island, Korea (한국 황해 백령도 주변해역 후 제4기 퇴적작용)

  • Cho, MinHee;Lee, Eunil;You, HakYoel;Kang, Nyen-Gun;Yoo, Dong-Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.145-153
    • /
    • 2013
  • High-resolution chirp profiles were analyzed to investigate the echo types of near-surface sediments in the Yellow Sea off the Baegryeong Island. On the basis of seafloor morphology and subbottom echo characters, 7 echo types were identified. Flat seafloor with no internal reflectors or moderately to well-developed subbottom reflectors (echo type 1-1 and 1-2) is mainly distributed in the southern part of the study area. Flat seafloor with superposed wavy bedforms (echo type 1-3) is also distributed in the middle part. Mounded seafloor with either smooth surface or superposed bedforms (echo type 2-1, 2-2, and 2-3) occurs in the middle part of the study area. Irregular and eroded seafloor with no subbottom reflectors (echo type 3-1) is present in the northern part of the study area off the Baegryeong Island. According to the distribution pattern and sedimentary facies of echo types, depositional environments can be divided into three distinctive areas: (1) active erosional zone due to strong tidal currents in the northern part; (2) formation of tidal sand ridges in response to tidal currents associated with sea-level rise distributed in the middle part; and (3) transgressive sand sheets in the southern part. Such a depositional pattern, including 7 echo types, in this area reflects depositional process related to the sea-level rise and strong tidal currents during the Holocene transgression.

The Holocene Environmental Change and Reconstruction of the Palaeogeography at Ilsan Area with the Special Reference to Pollen Analysis (花粉分析을 중심으로 본 一山지역의 홀로세 環境變化와 古地理復元)

  • Yoon, Soon-Ock
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.1
    • /
    • pp.15-30
    • /
    • 1997
  • This paper concerns the Holocene environmental change with vegetational history and sea-level fluctuation at Ilsan area by the analytical data of pollen, sedimentary facies and $C^14$-dating. The hypothetic palaeogeographic maps of the vegetation cover have been reconstructed with the reference to the periods of pollen zone. The environmental characteristics from the pollen zonation have been summerized as follows. 1)Pollenzone I(3.75~5.75m) showed the period of Alnus-and EMW-dominance. The study area was very humid under the influence of the transgression spreading widely from the rapid sea-level rise during the period(8,000~4,200y.BP). 2)Pollen zone II(5.75~6.35m) has been influenced by the fall of the sea-level and ground water surface. This zone(4,200~2,300y.BP) represented the period of spore~ and NAP-dominance with the increase of Pinus. 3) Pollen zone III(6.35~6.55m) has reflected the influence of the transgression and human interferences together. This zone(2,300~1,800y.BP) represented the period of NAP-dominance. The boundary between Subzone Ilb and Pollen zone III represents the same characteristics as what Weber says Grenzhorizont.

  • PDF